Appendices

(No. of pages including blank pages = 514)

Appendix 1 Noise Compliance Report 2020 (392 pages)

Appendix 2 Annual Groundwater Monitoring Review 2020 (120 pages)

ASHTON COAL OPERATIONS LIMITED

Ashton Coal Project

2020 ANNUAL REVIEWReport No.737/24c

This page has intentionally been left blank

Appendix 1

Noise Compliance Report 2020

(No. of pages including blank pages = 392)

ASHTON COAL OPERATIONS LIMITED

Ashton Coal Project

2020 ANNUAL REVIEWReport No.737/24c

This page has intentionally been left blank

12 February 2021

Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800 E info@emmconsulting.com.au

www.emmconsulting.com.au

Amrish Trivedi Environment and Community Coordinator Ashton Coal Operations Pty Ltd PO Box 699 Singleton NSW 2330 Australia

Re: EPL 11879 - Noise compliance assessment report 2020

Dear Amrish,

1 Introduction

EMM Consulting Pty Limited (EMM) has been engaged by Ashton Coal Operations Pty Limited (Ashton Coal) to prepare this Noise Compliance Assessment Report for the period 1 January 2020 to 31 December 2020. The Noise Compliance Assessment Report is required as per Condition R5.1 of Environment Protection Licence (EPL) 11879 dated 3 February 2020 which is reproduced as follows:

R5.1 Noise Compliance Assessment Report

A noise compliance assessment report must be submitted to the EPA on an annual basis with the Annual Return as set out in Condition R1. The report must be prepared by an accredited acoustical consultant and determine compliance with noise limits at noise monitoring points specified in Condition (s) P1.4 and L4.2 to L4.4.

2 EPL amendments

EPL 11879 was varied once during the 2020 reporting period. Some conditions in EPL 11879 relating to noise were updated on 3 February 2020 (within the reporting period) and are summarised as follows:

- Condition P1.4 was updated, including reference to the two inversion towers (EPA Points 32 and 33)
 used for the purposes of calculating temperature inversion conditions, which is used to determine
 applicability of noise limits;
- Condition L4.1 was updated to tabulate the attended noise monitoring locations (EPA Points 13, 14 and 15);
- Condition L4.2 was updated to reference the noise limit table in condition L4.1;
- Condition L4.4 was added to include use of temperature inversion data calculated from EPA Points 32 and 33;
- Conditions L4.3 and L4.6 were removed;
- Condition M4.1 was updated to reference approved methods to calculate temperature inversions; and
- Condition E.1 was removed, as the requirements of this condition had been completed.

H190832 | RP#13 | v1

3 Compliance

Monthly attended noise monitoring was undertaken by EMM for the period relevant to this report (refer Appendix A to Appendix L for complete noise monitoring reports).

As presented in the attached monthly reports, results of routine attended monitoring confirm that noise emissions from Ashton Coal operations satisfied the relevant EPL noise limits (Condition L4.1 of EPL 11879) at all assessment locations during periods when noise limits were applicable.

4 EPA correspondence

During this reporting period, the NSW Environment Protection Authority (EPA) also provided comments on the Ashton Coal monthly noise compliance monitoring reports. The EPA provided comment in relation to the following items:

- The requirements outlined in Section 7.1.3 of the NSW EPAs Noise Policy for Industry (NPfI) and Australian Standards; and
- The addition of one-third octave frequency analysis of the measurements in the monthly noise compliance monitoring reports.

Ashton Coal and EMM welcomed the comments and are fully aware of the EPAs expectations in regard to managing and mitigating noise, both under non-noise enhancing and noise enhancing meteorological conditions. Further, the subsequent monthly compliance noise reports included graphs of the noise levels measured in the one-third octave band frequencies for direct comparison to the LFN thresholds.

5 Conclusion

Monthly attended noise monitoring undertaken during the relevant reporting period (1 January 2020 to 31 December 2020) demonstrated that noise emissions from Ashton Coal night-time operations satisfied the relevant limits at all monitoring points in accordance with the EPL 11879.

We trust the preceding meets your current requirements. If you have any questions or need anything further, please do not hesitate to contact our office.

Yours sincerely

Lucas Adamson

Senior Acoustic Consultant

ladamson@emmconsulting.com.au

Review: Najah Ishac (19/1/2021)

H190832 | RP#13 | v1

Appendix A

Monthly attended noise monitoring report - January 2020

Ashton Coal Monthly attended noise monitoring January 2020 **Prepared for Ashton Coal Operations Pty Ltd** February 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - January 2020

Prepared for Ashton Coal Operations Pty Ltd February 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Senior Acoustic Consultant

4 February 2020

Monthly attended noise monitoring - January 2020

Report Number	
H190832 RP1	
Client	
Ashton Coal Operations Pty Ltd	
Date	
4 February 2020	
Version	
v1-0 Final	
Prepared by	Approved by
L. Ada	MSC
	. /
Lucas Adamson	Katie Teyhan

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Associate

4 February 2020

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

Т	mtroc	1	
2	Gloss	ary of acoustic terms	2
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	sment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	w of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Concl	usion	14
Ref	erence	5	15
	pendice		
	oendix /		A.1
	oendix l		B.1
App	oendix (C Calibration certificates	C.2
Tab	oles		
Tab	le 2.1	Glossary of acoustic terms	2
Tab	le 2.2	Perceived change in noise	3
Tab	le 3.1	Noise impact assessment criteria	4
Tab	le 3.2	One-third octave low-frequency noise thresholds	6
Tab	le 4.1	Attended noise monitoring locations	7
Tab	le 4.2	Stability categories and temperature lapse rates	10
Tab	le 5.1	Ashton Coal attended noise monitoring results – January 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

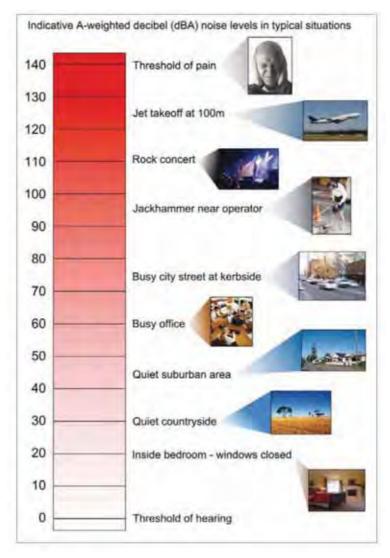
This report presents the results and findings of attended noise monitoring conducted on 20 January 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 20 January 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 20 January 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 20 January 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment		
up to 2	not perceptible		
3	just perceptible		
5	noticeable difference		
10	twice (or half) as loud		
15	large change		
20	four times (or quarter) as loud		

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfI (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 20 January 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one $^-$ third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits.

Ashton Coal attended noise monitoring results – January 2020

Table 5.1

Exceedance, Comments		Ashton Coal hum consistently audible with engine revs and dozer tracks on occasion. Insects, traffic on the New England Highway and another mine in the vicinity consistently audible.	Ashton Coal hum consistently audible with engine revs and dozer tracks on occasion. Insects and another mine in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Resident noise and nearby animals occasionally audible.	Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Bird noise, distant dogs barking, powerline hum occasionally audible.	
Exceedance	dB	ΞZ	 Z	Ξ Z	
Meteorological	conditions ³ limits apply (Y/N)	2.8 m/s @ 263° E class stability -0.4°C/100m VTG Y	1.4 m/s @ 294° E class stability -0.1°C/100m VTG Y	1.3 m/s @ 312° E class stability -0.4°C/100m VTG Y	
Noise limits, dB	L _{Amax} ²	46	46	46	
Noise li	L _{Aeq}	36	36	36	
Site contributions, dB	Laeq Lamax ² Laeq	44	45	⊴	
ntributic	L _{Aeq}	35	36	₫	
Site cor	LFN mod. factor ¹	Ë	Ë	Ë	1
	Lceq	58	56	55	
	L _{Amax}	99	59	64	
els, dB	L _{A1}	58	51	46	
Total noise levels, dB	L _{A10}	52	45	41	
Totalr	LAeq	49	43	37	
	L _{A90}	37	88	29	
	Lamin	34	35	25	
	Start time	22:01	22:19	22:40	
	əteO	20/1	20/1	20/1	
	Location	N2	N N	4N	

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\mathsf{A1,1}}$ $_{\mathsf{minute}}$ are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent mine hum, with engine revs and dozer tracks on occasion. The Ashton Coal mine noise contribution was estimated at up to 35 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated 44 dB L_{Amax}. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included another mine in the vicinity, traffic on the New England Highway and insects.

Mining operations in the vicinity were also consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 35 dB ($L_{Aeq,15\,minute}$ 38 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent mine hum, with engine revs and dozer tracks on occasion. The Ashton Coal mine noise contribution was estimated at up to 36 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated 45 dB L_{Amax}. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included another mine in the vicinity, traffic on the New England Highway, insects, resident noise and nearby animals.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 36 dB ($L_{Aeq,15 \, minute}$ 39 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 29 dB L_{A90}, the Ashton Coal mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, traffic on the New England Highway distant dogs barking, powerline hum and bird noise.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <23 dB ($L_{Aeq,15 \, minute}$ <26 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 20 January 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 32 and 33.

4 Operating Conditions

O1 Activities must be carried out in a competent manner

O1.1 Licensed activities must be carried out in a competent manner.

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE NO: 24152

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 1, 146 Hunter Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.81	989.84	1.58
Level 2:	NA	N	NA	NA	NA
Uncertainty:		3	±0.11 dB	±0.05%	±0.20 %

CONDITION OF TEST:

Ambient Pressure:

1004 hPa ±1.5 hPa Relative Humidity: 47% ±5%

Temperature:

°C ±2° C 20

Date of Calibration: 14/02/2019

Issue Date: 15/02/2019

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: ASJEC 60942 - 2017

CHECKED BY: ... AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile 0413 809806

Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 22129 & FILT 4384

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMGA Mitchell Mclennan

Ground Floor, Suite 01, 20 Chandos St

St Leonards NSW 2065

Ambient Pressure: 1008 hPa ±1.5 hPa

Temperature: 25 °C ±2° C Relative Humidity: 48% ±5%

Date of Calibration: 07/02/2018 Issue Date: 09/02/2018

AUTHORISED SIGNATURE:

Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

CHECKED BY:

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Page 1 of 2 AVCERT10 Rev. 1.3 05.02.18

Appendix B

Monthly attended noise monitoring report - February 2020

Ashton Coal Monthly attended noise monitoring February 2020 **Prepared for Ashton Coal Operations Pty Ltd** March 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - February 2020

Prepared for Ashton Coal Operations Pty Ltd March 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Monthly attended noise monitoring - February 2020

Report Number	
H190832 RP2	
Client	
Ashton Coal Operations Pty Ltd	
Date	
19 March 2020	
Version	
v1-0 Final	
Prepared by	Approved by
200	$h \rightarrow 1$
L. Add	McC
	. /

Lucas AdamsonSenior Acoustic Consultant
19 March 2020

Katie Teyhan Associate 19 March 2020

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

_	IIIII	duction	1
2	Gloss	ary of acoustic terms	2
3	Noise	e limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	ssment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	ew of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conc	lusion	14
Ref	erence	S	15
Ap	pendice	es	
Ар	pendix	A Project approval extract	A.1
Ap	pendix	B EPL extract	B.1
Ар	pendix	C Calibration certificates	C.2
Tak	oles		
Tak	ole 2.1	Glossary of acoustic terms	2
Tak	ole 2.2	Perceived change in noise	3
Tak	ole 3.1	Noise impact assessment criteria	4
Tak	ole 3.2	One-third octave low-frequency noise thresholds	6
Tak	ole 4.1	Attended noise monitoring locations	7
Tak	ole 4.2	Stability categories and temperature lapse rates	10
Tak	ole 5.1	Ashton Coal attended noise monitoring results – February 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

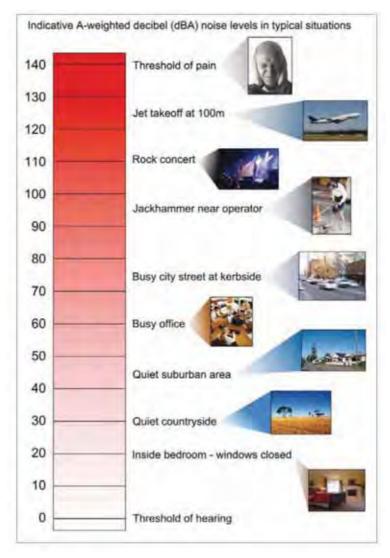
This report presents the results and findings of attended noise monitoring conducted on 25 February 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 25 February 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 3 February 2020 (current as of 25 February 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 25 February 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description					
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.					
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.					
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.					
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.					
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.					
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.					
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.					
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.					
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{Ceq,15 minute}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.					
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.					
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.					
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.					
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.					

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment		
up to 2	not perceptible		
3	just perceptible		
5	noticeable difference		
10	twice (or half) as loud		
15	large change		
20	four times (or quarter) as loud		

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfI (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

As one the weather stations (M1) specified in Condition L4.4 was not operational at the time of the February noise monitoring, a nearby weather station (M3) was utilised for the purposes of determining the relevant stability categories at the time of the measurements. M3 was deemed an appropriate alternative as it is located in a similar topographic area (ie Camberwell village) and is also at a similar height to M1.

The temperature lapse rate between the two weather stations (M3 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M3 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M3 (equal to 71 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 25 February 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M3 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Monitoring identified that site noise was inaudible at all three monitoring locations. Typically, when a particular source is not audible above local ambient noise levels, the likely contribution of that source is generally at least 10 dB below the measured background (L_{A90}) level.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfI one-third octave low-frequency noise thresholds. As Ashton Coal was found to be inaudible at all monitoring locations, LFN modifying factors were not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal attended noise monitoring results – February 2020

Table 5.1

Exceedance, Comments		Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Dogs barking, nearby animals, resident noise and trains on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Distant dogs barking, nearby animals, resident noise and trains on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Insects, frogs and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible.
Exceedanc	dВ	Ē	Ē	Ē
Meteorological	conditions ³ Limits apply (Y/N)	1.6 m/s @ 115° E class stability 1.1°C/100m VTG Y	1.8 m/s @ 126° E class stability 1.1°C/100m VTG Y	1.9 m/s @ 179° E class stability -0.3°C/100m VTG Y
Noise limits, dB	L _{Amax} 2	46	46	46
Noise li	L _{Aeq}	36	36	36
ns, dB	Laeq Lamax	⊴	⊴	₫
tributio	L _{Aeq}	⊴	⊴	₹
Site contributions, dB	LFN mod. factor ¹	Ë	Ë	Ë
	Lceq	61	59	62
	La1 Lamax Lceq	64	52	52
els, dB	L _{A1}	61	45	46
Total noise levels, dB	L _{A10}	54	40	45
Total n	LAeq	49	∞ ⊛	40
	L _{A90}	34	35	37
	L _{Amin}	30	32	33
	Start time	22:04	22:22	22:44
	ĐđgG	25/2	25/2	25/2
	Location	22	e Z	4 4

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the whole of the operator-attended noise survey. Given this and the measured background noise level of L_{A90} 34 dB, the Ashton Coal $L_{Aeq,15 \text{ minute}}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, nearby animals, dogs barking, resident noise, trains on the main line (unrelated to Ashton Coal), traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were also consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 28 dB ($L_{Aeq,15\,minute}$ 31 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the whole of the operator-attended noise survey. Given this and the measured background noise level of L_{A90} 35 dB, the Ashton Coal $L_{Aeq,15 \text{ minute}}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, nearby animals, dogs barking, resident noise, trains on the main line (unrelated to Ashton Coal), traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 31 dB ($L_{Aeq,15 \, minute}$ 34 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 37 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs and traffic on the New England Highway.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 34 dB ($L_{Aeq,15\,minute}$ 37 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 25 February 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M3 and M2) located to the east of the site. Noise limits were found to be applicable during all three noise measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix C

Monthly attended noise monitoring report - March 2020

Ashton Coal Monthly attended noise monitoring March 2020 **Prepared for Ashton Coal Operations Pty Ltd** March 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - March 2020

Prepared for Ashton Coal Operations Pty Ltd March 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Lucas Adamson

19 March 2020

Senior Acoustic Consultant

Monthly attended noise monitoring - March 2020

Report Number	
H190832 RP3	
Client	
Ashton Coal Operations Pty Ltd	
Date	
19 March 2020	
Version	
v1-0 Final	
Prepared by	Approved by
05	Msc
L. ASS	MS

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Katie Teyhan

19 March 2020

Associate

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

_	IIILIOC	detion	1
2	Glossa	2	
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Assess	sment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	w of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Concl	usion	14
Ref	erences		15
	endice		
	endix A		A.1
	endix E		B.1
App	endix (Calibration certificates	C.2
Tab			
	le 2.1	Glossary of acoustic terms	2
	le 2.2	Perceived change in noise	3
	le 3.1	Noise impact assessment criteria	4
	le 3.2	One-third octave low-frequency noise thresholds	6
Tab	le 4.1	Attended noise monitoring locations	7
Tab	le 4.2	Stability categories and temperature lapse rates	10
Tab	le 5.1	Ashton Coal attended noise monitoring results – March 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

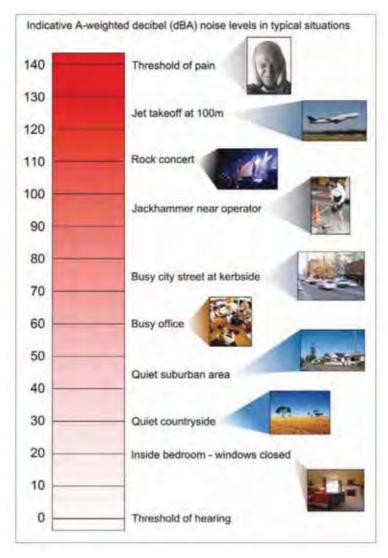
This report presents the results and findings of attended noise monitoring conducted on 12 March 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 12 March 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 12 March 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 12 March 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description					
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.					
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.					
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.					
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.					
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.					
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.					
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.					
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.					
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.					
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.					
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.					
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.					
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.					
-						

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment		
up to 2	not perceptible		
3	just perceptible		
5	noticeable difference		
10	twice (or half) as loud		
15	large change		
20	four times (or quarter) as loud		

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) L_{Aeq (period)}

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 12 March 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Results of noise monitoring identified that site noise was inaudible at all three monitoring locations. Typically, when a particular source is not audible above local ambient noise levels, the likely contribution of that source is generally at least 10 dB below the measured background (L_{A90}) level. Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits at all monitoring locations.

Low frequency noise was conservatively assessed by comparison of the total measured one $\dot{}$ third octave L_{Aeq} noise levels to the NPfI one-third octave low-frequency noise thresholds. As Ashton Coal was found to be inaudible at all monitoring locations, LFN modifying factors were not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal attended noise monitoring results – March 2020

Table 5.1

Exceedance, Comments		Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway and nearby animals frequently audible. Bird noise, distant dogs barking and wind in foliage occasionally audible.	Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Bird noise, distant dogs barking and wind in foliage occasionally audible.	Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Bird noise and a train on the main line (unrelated to Ashton Coal) occasionally audible.
Exceedan	dB	Ξ	Ξ	Z
Meteorological	conditions³ limits apply (Y/N)	2.9 m/s @ 89° E class stability 1.0°C/100m VTG Y	2.8 m/s @ 96° E class stability 0.7°C/100m VTG Y	2.7 m/s @ 112° F class stability 1.5°C/100m VTG Y
Noise limits, dB	L _{Amax} 2	46	46	46
Noise li	L _{Aeq}	36	36	36
ons, dB	Laeq Lamax² Laeq	⋖	⋖	⊴
Site contributions, dB	LAeq	₹	⊴	⊴
Site con	LFN mod. factor ¹	Ë	Ë	Ē
	Lceq	54	54	228
	LAmax	26	62	55
els, dB	L _{A1}	50	43	47
Total noise levels, dB	L A10	45	80 87	43
Total n	LAeq	41	36	40
	L _{A90}	32	31	35
	Lamin	28	27	31
	Start time	22:00	22:17	22:38
	Date	12/3	12/3	12/3
	Location	N2	Z Z	N4

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfl (refer Section 3.3). 2. For assessment purposes the Lamax and the Lamax and interchangeable. Notes:

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the whole of the operator-attended noise survey. Given this and the measured background noise level of L_{A90} 32 dB, the Ashton Coal $L_{Aeq,15 \text{ minute}}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, bird noise, nearby animals, dogs barking, traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night} \le 28 \text{ dB}$ ($L_{Aeq,15 \text{ minute}} \le 31 \text{ dB} - 3 \text{ dB}$ as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night} \ne 40 \text{ dB}$). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the whole of the operator-attended noise survey. Given this and the measured background noise level of L_{A90} 31 dB, the Ashton Coal $L_{Aeq,15 \text{ minute}}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, bird noise, nearby animals, dogs barking, traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night} \le 28 \text{ dB}$ ($L_{Aeq,15 \text{ minute}} \le 31 \text{ dB} - 3 \text{ dB}$ as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night} \ne 40 \text{ dB}$). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 35 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, bird noise, a train on the main line (unrelated to Ashton Coal), traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night} \le 28 \text{ dB}$ ($L_{Aeq,15 \text{ minute}} \le 31 \text{ dB} - 3 \text{ dB}$ as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night} \ne 40 \text{ dB}$). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 12 March 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 95% c.l.) k=2					

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix D

Monthly attended noise monitoring report - April 2020

Ashton Coal Monthly attended noise monitoring April 2020 **Prepared for Ashton Coal Operations Pty Ltd** May 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - April 2020

Prepared for Ashton Coal Operations Pty Ltd May 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Monthly attended noise monitoring - April 2020

Report Number	
H190832 RP4	
Client	
Ashton Coal Operations Pty Ltd	
Date	
12 May 2020	
Version	
v2-0 Final	
Prepared by	Approved by
L. Add	McC
K-20, 4745	, ,

Lucas AdamsonSenior Acoustic Consultant
12 May 2020

Katie Teyhan Associate 12 May 2020

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Introduction		1
2	Gloss	2	
3	Noise	e limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	ssment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	ew of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conc	lusion	14
Ref	erence	S	15
Apı	pendice	es es	
Apı	pendix	A Project approval extract	A.1
Apı	oendix	B EPL extract	B.1
Appendix C (C Calibration certificates	C.2
Tak	oles		
Table 2.1		Glossary of acoustic terms	2
Table 2.2		Perceived change in noise	3
Tak	ole 3.1	Noise impact assessment criteria	4
Tak	ole 3.2	One-third octave low-frequency noise thresholds	6
Tak	ole 4.1	Attended noise monitoring locations	7
Table 4.2		Stability categories and temperature lapse rates	10

H190832 | RP4 | v2-0

Table 5.1	Table 5.1 Ashton Coal attended noise monitoring results – April 2020	
Figures		
Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

H190832 | RP4 | v2-0 ii

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

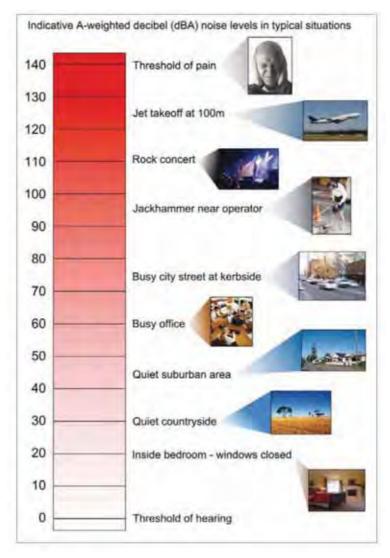
This report presents the results and findings of attended noise monitoring conducted on 14 April 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 14 April 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 14 April 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 14 April 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1 minute}	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15minute}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment
up to 2	not perceptible
3	just perceptible
5	noticeable difference
10	twice (or half) as loud
15	large change
20	four times (or quarter) as loud

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) L_{Aeq (period)}

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56		
		Easting	Northing	
N2	Camberwell Village (west)	320297	6405670	
N3	Camberwell Village (north east)	320554	6405839	
N4	South of New England Highway	319776	6404101	

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M1, as the wine vane of meteorological station M2 was offline at the time of the monitoring.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 14 April 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be not applicable during all three measurements due to the presence of a G class stability category at the time of the measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – April 2020

Table 5.1

Exceedance, Comments		Ashton Coal mine hum consistently audible. Insects, frogs, traffic on the New England Highway and other mines in the vicinity consistently audible. Train on the main line (unrelated to Ashton Coal), bird noise and distant dogs barking occasionally audible.	Ashton Coal mine hum consistently audible. Insects, frogs and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Car passby, aircraft noise and distant dogs barking occasionally audible.	Ashton Coal mine hum consistently audible. Insects, frogs and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible.
Exceedance	dВ	N/A	N/A	N/A
Meteorological	conditions ³ limits apply (Y/N)	0.0 m/s (Calm) G class stability 6.6°C/100m VTG N	0.2 m/s @ 344° G class stability 6.3°C/100m VTG N	0.0 m/s (Calm) G class stability 5.3°C/100m VTG N
Noise limits, dB	L _{Amax} ²	46	46	46
Noise li	L _{Aeq}	36	36	36
ons, dB	Laeq Lamax	35	34	31
Site contributions, dB	LAeq	35	34	31
Site cor	LFN mod. factor ¹	Ë	Ē	Ē
	Lceq	62	29	62
	L _{Amax} L _{Ceq}	65	70	62
els, dB	L _{A1}	61	54	52
Total noise levels, dB	L _{A10}	55	46	46
Totalr	LAeq	51	45	43
	Lamin La90	41	80	88
	LAmin	37	36	36
	emit trat2	22:02	22:19	22:41
	Date	14/4	14/4	14/4
	Location	N2	N3	4 4

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

3. Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

4. IA = inaudible.5. N/A = not applicable.

12

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent conveyor hum. The Ashton Coal mine noise contribution was estimated at up to 35 dB L_{Aeq,15 minute}. Conveyor hum from site generated an estimated 35 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, bird noise, distant dogs barking and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 37 dB ($L_{Aeq,15\,minute}$ 40 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent conveyor hum. The Ashton Coal mine noise contribution was estimated at up to 34 dB L_{Aeq,15 minute}. Conveyor hum from site generated an estimated 34 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, a car passby, aircraft noise and distant dogs barking.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 34 dB ($L_{Aeq,15\ minute}$ 37 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent conveyor hum. The Ashton Coal mine noise contribution was estimated at up to 31 dB $L_{Aeq,15 \text{ minute}}$. Conveyor hum from site generated an estimated 31 dB L_{Amax} . Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects and frogs.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 34 dB ($L_{Aeq,15\ minute}$ 37 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 14 April 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be not applicable during all three measurements due to the presence of a G class stability category at the time of the measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAeq (15min))	Evening (LARG (15min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 95% c.l.) k=2					

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix E

Monthly attended noise monitoring report - May 2020

Ashton Coal Monthly attended noise monitoring May 2020 **Prepared for Ashton Coal Operations Pty Ltd** June 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - May 2020

Prepared for Ashton Coal Operations Pty Ltd June 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Lucas Adamson

10 June 2020

Senior Acoustic Consultant

Monthly attended noise monitoring - May 2020

Report Number	
H190832 RP5	
Client	
Ashton Coal Operations Pty Ltd	
Date	
10 June 2020	
Version	
v1-0 Final	
Prepared by	Approved by
L. Ada	Msc

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Katie Teyhan

10 June 2020

Associate

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

Τ	Introduction		1
2	Gloss	2	
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	sment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	w of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Concl	usion	14
Ref	erence		15
Apr	pendice	s	
	oendix <i>i</i>		A.1
Арр	oendix l	B EPL extract	B.1
App	oendix (Calibration certificates	C.2
Tab	oles		
Table 2.1		Glossary of acoustic terms	2
Table 2.2		Perceived change in noise	3
Tab	le 3.1	Noise impact assessment criteria	4
Tab	le 3.2	One-third octave low-frequency noise thresholds	6
Tab	le 4.1	Attended noise monitoring locations	7
Tab	le 4.2	Stability categories and temperature lapse rates	10
Tab	le 5.1	Ashton Coal attended noise monitoring results – May 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

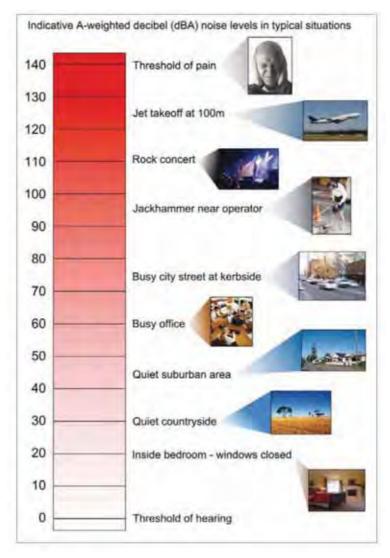
This report presents the results and findings of attended noise monitoring conducted on 27 May 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 27 May 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 27 May 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 27 May 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment	
up to 2	not perceptible	
3	just perceptible	
5	noticeable difference	
10	twice (or half) as loud	
15	large change	
20	four times (or quarter) as loud	

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) L_{Aeq (period)}

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA	56
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 27 May 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be not applicable during one of the three measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurement.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – May 2020

Table 5.1

Exceedance, Comments		Ashton Coal engine revs occasionally audible. Insects and other mine in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Train on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal engine revs and dozer tracks occasionally audible. Insects, frogs and other mine in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Bird noise and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Insects and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Livestock and a train on the main line (unrelated to Ashton Coal) occasionally audible.	
Exceedance	dB	N/A	Z	Ξ. Z	
Meteorological	conditions ³ limits apply (Y/N)	1.0 m/s @ 194° F class stability 3.6°C/100m VTG N	1.0 m/s @ 219° F class stability 3.0°C/100m VTG Y	1.0 m/s @ 205° F class stability 3.0°C/100m VTG Y	
Noise limits, dB	L _{Amax} ²	46	46	46	
Noise li	L _{Aeq}	36	36	36	
ns, dB	L _{Aeq} L _{Amax} ²	93	40	₹	
Site contributions, dB	L _{Aeq}	33	<35	⊴	
Site cor	LFN mod. factor ¹	Ē	Ë	Ë	
	Lceq	62	61	61	
	La1 Lamax Lceq	63	59	49	
rels, dB		55	52	45	
Total noise levels, dB	L _{A10}	52	49	40	
Totalr	LAeq	48	46	39	
	Lamin Laso Laeq		43	37	
	L _{Amin} 39		40	35	
22. Start time		22:21	27/5 22:43		
	Date	27/5	27/5	27/5	
	noiteool \overline{S}		N3	4 4	

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfl (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the L_{A1,1 minute} are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.

^{5.} N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were occasionally audible during the operator-attended noise survey including engine revs. The Ashton Coal mine noise contribution was estimated at up to <33 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated <33 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 36 dB ($L_{Aeq,15\,minute}$ 39 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were occasionally audible during the operator-attended noise survey including dozer tracks and engine revs. The Ashton Coal mine noise contribution was estimated at up to <35 dB $L_{Aeq,15 \, minute}$. Engine revs and dozer tracks from site generated an estimated 40 dB L_{Amax} . Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, bird noise and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 37 dB ($L_{Aeq,15 \, minute}$ 40 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 37 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included insects, livestock, a train on the main line (unrelated to Ashton Coal), traffic on the New England Highway and other mines in the vicinity.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 35 dB ($L_{Aeq,15\,minute}$ 38 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 27 May 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be not applicable during one of the three measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurement.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAeq (15min))	Evening (LARG (15min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix F

Monthly attended noise monitoring report - June 2020

Ashton Coal Monthly attended noise monitoring June 2020 **Prepared for Ashton Coal Operations Pty Ltd** June 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - June 2020

Prepared for Ashton Coal Operations Pty Ltd June 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

30 June 2020

Monthly attended noise monitoring - June 2020

Report Number	
H190832 RP6	
Client	
Ashton Coal Operations Pty Ltd	
Date	
30 June 2020	
Version	
v1-0 Final	
Prepared by	Approved by
L. ASS	My
Lucas Adamson	Katie Teyhan
Senior Acoustic Consultant	Associate

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

30 June 2020

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

Τ.	IIILIOU	uction	1
2	Glossa	2	
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Assess	sment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	w of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conclu	usion	14
Refe	erences		15
Арр	endices	5	
Арр	endix A	Project approval extract	A.1
Арр	endix B	EPL extract	B.1
Арр	endix C	Calibration certificates	C.2
Tabl	es		
Tabl	e 2.1	Glossary of acoustic terms	2
Tabl	e 2.2	Perceived change in noise	3
Tabl	e 3.1	Noise impact assessment criteria	4
Tabl	e 3.2	One-third octave low-frequency noise thresholds	6
Tabl	e 4.1	Attended noise monitoring locations	7
Tabl	e 4.2	Stability categories and temperature lapse rates	10
Tabl	e 5.1	Ashton Coal attended noise monitoring results – June 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

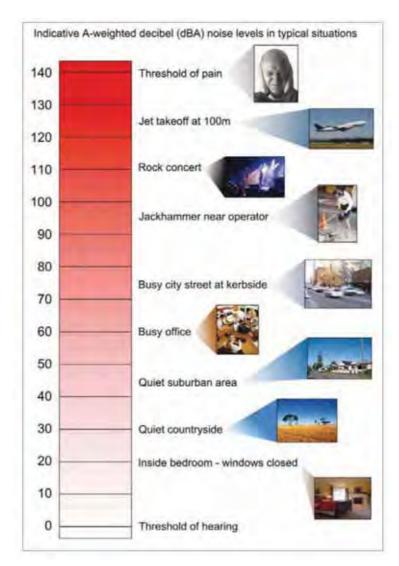
This report presents the results and findings of attended noise monitoring conducted on 17 June 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 17 June 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 17 June 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 17 June 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment			
up to 2	not perceptible			
3	just perceptible			
5	noticeable difference			
10	twice (or half) as loud			
15	large change			
20	four times (or quarter) as loud			

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56			
		Easting	Northing		
N2	Camberwell Village (west)	320297	6405670		
N3	Camberwell Village (north east)	320554	6405839		
N4	South of New England Highway	319776	6404101		

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal, after the noise monitoring was completed, confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 17 June 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all of the three measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfI one-third octave low-frequency noise thresholds. As Ashton Coal was found to be inaudible at all monitoring locations, LFN modifying factors were not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – June 2020

Table 5.1

Exceedance, Comments		Ashton Coal inaudible. Insects, frogs, other mines in the vicinity and traffic on the New England Highway consistently audible. Wind in foliage and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Other mines in the vicinity, dripping water at a nearby residence and traffic on the New England Highway consistently audible. Wind in foliage, distant dogs barking and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Insects, frogs and other mines in the vicinity consistently audible. Traffic on the New England Highway frequently audible. Livestock occasionally audible.
Exceedance	dВ	Ξ	Ξ	Ξ
Meteorological	conditions ³ limits apply (Y/N)	2.3 m/s @ 139° E class stability -0.3°C/100m VTG Y	2.0 m/s @ 137° E class stability -0.4°C/100m VTG Y	2.0 m/s @ 128° E class stability -0.3°C/100m VTG Y
Noise limits, dB	L _{Amax} 2	46	46	46
Noise li	L _{Aeq}	36	36	36
ons, dB	Laeq Lamax² Laeq	<u>A</u>	4	ĕ.
tributio	LAeq	⊴	⊴	⊴
Site contributions, dB	LFN mod. factor ¹	Ë	Ë	Ē
	Lceq	57	59	57
	L _{Атах}	61	63	49
els, dB	L _{A1}	22	51	45
Total noise levels, dB	L _{A10}	52	47	45
Total n	LAeq	48	44	39
	L _{A90}	35	37	34
	L _{Amin}	30	33	30
	Start time	22:03	22:20	22:42
	Date	17/6	17/6	17/6
	Location	N N N N N N N N N N N N N N N N N N N	e z	X

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 35 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, wind in foliage and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <27 dB ($L_{Aeq,15 \, minute}$ <30 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 37 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, dripping water at a nearby residence, traffic on the New England Highway, wind in foliage, distant dogs barking and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <29 dB ($L_{Aeq,15 \, minute}$ <32 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 34 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway and livestock.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <28 dB ($L_{Aeq,15 \, minute}$ <31 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 17 June 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all of the three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAeq (15min))	Evening (LARG (15min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- 1. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

 Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix G

Monthly attended noise monitoring report - July 2020

Ashton Coal Monthly attended noise monitoring July 2020 **Prepared for Ashton Coal Operations Pty Ltd** July 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - July 2020

Prepared for Ashton Coal Operations Pty Ltd July 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Lucas Adamson

28 July 2020

Senior Acoustic Consultant

Monthly attended noise monitoring - July 2020

Report Number	
H190832 RP7	
Client	
Ashton Coal Operations Pty Ltd	
Date	
28 July 2020	
Version	
v1-0 Final	
Prepared by	Approved by
L. Ada	Msc

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Katie Teyhan

28 July 2020

Associate

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

_	IIIII	duction	1
2	Gloss	ary of acoustic terms	2
3	Noise	e limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	ssment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	ew of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conc	lusion	14
Ref	erence	s	15
Apı	pendice	es	
App	pendix	A Project approval extract	A.1
App	pendix	B EPL extract	B.1
Арі	pendix	C Calibration certificates	C.2
Tab	oles		
	le 2.1	Glossary of acoustic terms	2
Tak	le 2.2	Perceived change in noise	3
Tab	le 3.1	Noise impact assessment criteria	4
Tab	le 3.2	One-third octave low-frequency noise thresholds	6
Tak	le 4.1	Attended noise monitoring locations	7
Tak	le 4.2	Stability categories and temperature lapse rates	10
Tab	le 5.1	Ashton Coal attended noise monitoring results – July 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

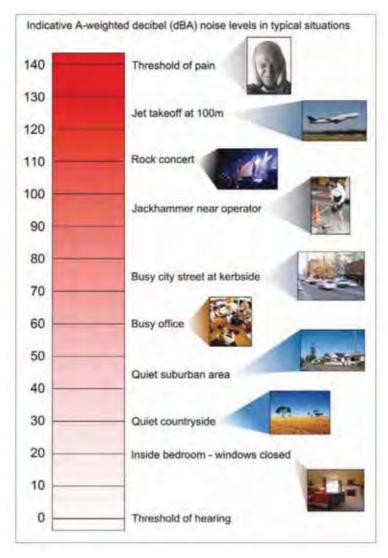
This report presents the results and findings of attended noise monitoring conducted on 22 July 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 22 July 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 22 July 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 22 July 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1 minute}	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15minute}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{Ceq,15 minute}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment
up to 2	not perceptible
3	just perceptible
5	noticeable difference
10	twice (or half) as loud
15	large change
20	four times (or quarter) as loud

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night	
Camberwell Village	60	50	45	
All other privately-owned land	55	50	45	

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 22 July 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be not applicable during all three measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – July 2020

Table 5.1

Exceedance, Comments		Ashton Coal conveyor hum consistently audible, with engine revs on occasion. Insects, frogs, other mines in the vicinity and traffic on the New England Highway consistently audible. Livestock occasionally audible.	Ashton Coal conveyor hum consistently audible, with engine revs and bangs on occasion. Insects, frogs, other mines in the vicinity and traffic on the New England Highway consistently audible. Nearby animals, bird noise, nearby sprinkler and a train on the main line (unrelated to Ashton Coal) frequently audible.	Ashton Coal inaudible. Other mines in the vicinity and traffic on the New England Highway consistently audible. Insects occasionally audible.
Exceedance,	dВ	N/A	N/A	N/A
Meteorological	conditions ³ limits apply (Y/N)	1.1 m/s @ 300° G class stability 4.7°C/100m VTG N	1.3 m/s @ 293° G class stability 4.4°C/100m VTG N	1.7 m/s @ 297° F class stability 3.8°C/100m VTG N
Noise limits, dB	L _{Amax} 2	46	46	46
Noise li	L _{Aeq}	36	36	36
ns, dB	Laeq Lamax	40	44	₹
Site contributions, dB	L _{Aeq}	35	36	₹
Site cor	LFN mod. factor ¹	Ë	Ë	Ē
	Lcea	62	59	28
	La1 Lamax Lceq	62	67	99
rels, dB	L _{A1}	22	52	20
Total noise levels, dB	L _{A10}	57	48	45
Total n	Laeq	52	45	42
	L _{A90}	39	40	36
	L _{Amin}	37	38	34
	Start time	22:30	22:48	22:09
	əteO	7/27	22/7	22/7
	Location	N2	N3	4 4

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were consistently audible during the operator-attended noise survey including conveyor hum with engine revs on occasion. The Ashton Coal mine noise contribution was estimated at up to 35 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated 40 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway and livestock.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 36 dB ($L_{Aeq,15 \, minute}$ 39 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were consistently audible during the operator-attended noise survey including conveyor hum with engine revs and bangs on occasion. The Ashton Coal mine noise contribution was estimated at up to 36 dB L_{Aeq,15 minute}. A bang from site generated an estimated 44 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, insects, frogs, a nearby sprinkler, nearby animals, bird noise, a train on the main line (unrelated to Ashton Coal) and traffic on the New England Highway.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 37 dB ($L_{Aeq,15\ minute}$ 40 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 36 dB L_{A90} , the Ashton Coal $L_{Aeq,15 \, minute}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, insects and traffic on the New England Highway.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 32 dB ($L_{Aeq,15\ minute}$ 35 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 22 July 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be not applicable during all three measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAeq (15min))	Evening (LARG (15min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- 1. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

 Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 95% c.l.) k=2					

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix H

Monthly attended noise monitoring report - August 2020

Ashton Coal Monthly attended noise monitoring August 2020 **Prepared for Ashton Coal Operations Pty Ltd** August 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - August 2020

Prepared for Ashton Coal Operations Pty Ltd August 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Lucas Adamson

21 August 2020

Senior Acoustic Consultant

Monthly attended noise monitoring - August 2020

Report Number		
H190832 RP8		
Client		
Ashton Coal Operations Pty Ltd		
Date		
21 August 2020		
Version		
v1-0 Final		
Prepared by	Approved by	
. 0-	MTe C	
L. Acc	MC	

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Katie Teyhan

21 August 2020

Associate

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Introd	uction	1
2	Glossa	ry of acoustic terms	2
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Assess	ment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	v of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conclu	usion	14
Refe	erences		15
Λ	ondino.		
	endices endix A		A.1
	endix B		B.1
	endix C		C.2
Tabl	les		
Tabl	e 2.1	Glossary of acoustic terms	2
Tabl	e 2.2	Perceived change in noise	3
Tabl	e 3.1	Noise impact assessment criteria	4
Tabl	e 3.2	One-third octave low-frequency noise thresholds	6
Tabl	e 4.1	Attended noise monitoring locations	7
Tabl	e 4.2	Stability categories and temperature lapse rates	10
Tabl	e 5.1	Ashton Coal attended noise monitoring results – August 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

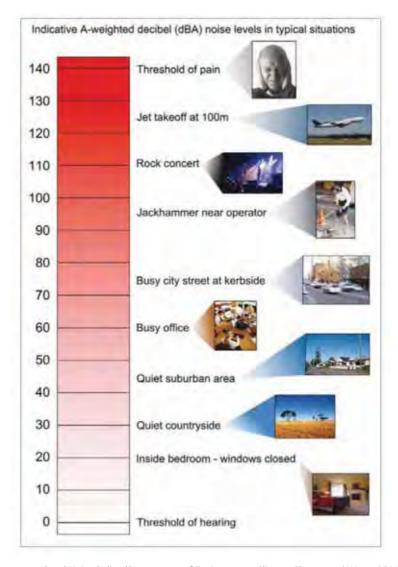
This report presents the results and findings of attended noise monitoring conducted on 11 August 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 11 August 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 11 August 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 11 August 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description			
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.			
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.			
L _{A1,1 minute}	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.			
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.			
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.			
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15minute}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.			
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.			
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.			
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.			
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.			
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.			
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.			
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.			

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment	
up to 2	not perceptible	
3	just perceptible	
5	noticeable difference	
10	twice (or half) as loud	
15	large change	
20	four times (or quarter) as loud	

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) L_{Aeq (period)}

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56		
		Easting	Northing	
N2	Camberwell Village (west)	320297	6405670	
N3	Camberwell Village (north east)	320554	6405839	
N4	South of New England Highway	319776	6404101	

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
А	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ∆T < -1.5	
D	-1.5 ≤ ∆T < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	1.5 ≤ ΔT < 4.0	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 11 August 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be not applicable during the first two measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – August 2020

Table 5.1

Exceedance, Comments	dB	N/A Ashton Coal inaudible. Other mines in the vicinity, insects, frogs and traffic on the New England Highway consistently audible. Distant dogs barking and resident noise occasionally audible.	N/A Ashton Coal inaudible. Other mines in the vicinity, insects, frogs, dripping/running water and traffic on the New England Highway consistently audible. Distant dogs barking, livestock and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Nil Ashton Coal inaudible. Other mines in the vicinity, insects, frogs and power line hum consistently audible. Traffic on the New England Highway frequently audible. Distant dogs barking occasionally audible.
-	conditions ³ limits apply (Y/N)	2.1 m/s @ 116° F class stability 3.6°C/100m VTG N	1.5 m/s @ 148° F class stability 3.3°C/100m VTG N	2.6 m/s @ 179° F class stability 2.1°C/100m VTG Y
its, dB	L _{Amax}	46	46	46
Noise limits, dB	LAeq	36	36	36
ns, dB	LAeq LAmax	⊴	₫	⊴
Site contributions, dB	LAeq	⊴	₫	⊴
Site con	LFN mod. factor ¹	Ë	Ē	Ē
	Lceq	09	09	61
	LAmax	99	65	62
els, dB	L _{A1}	57	56	49
Total noise levels, dB	L _{A10}	52	20	46
Total n	LAeq	47	47	44
	L _{A90}	36	36	41
	LAmin	32	32	39
	Start time	22:00	22:17	22:38
	Date	11/8	11/8	11/8
Location		N2	N3	44 4

Notes:

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfl (refer Section 3.3).
2. For assessment purposes the L_{Amax} and the L_{ALL minute} are interchangeable.
3. Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

5. N/A = not applicable.

12

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 36 dB L_{A90} , the Ashton Coal $L_{Aeq,15 \, minute}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, distant dogs barking and resident noise.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 28 dB ($L_{Aeq,15 \, minute}$ 31 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 36 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, insects, frogs, dripping/running water, traffic on the New England Highway, distant dogs barking, livestock, a train on the main line (unrelated to Ashton Coal) and bird noise.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 29 dB ($L_{Aeq,15\ minute}$ 32 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 41 dB L_{A90} , the Ashton Coal $L_{Aeq,15 \, minute}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, power line hum, traffic on the New England Highway and distant dogs barking.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 33 dB ($L_{Aeq,15\ minute}$ 36 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 11 August 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be not applicable during the first two measurements due to the presence of temperature inversion conditions greater than 3°C/100m at the time of the measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAeq (15min))	Evening (LARG (15min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- 1. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

 Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix I

Monthly attended noise monitoring report - September 2020

Ashton Coal Monthly attended noise monitoring September 2020 **Prepared for Ashton Coal Operations Pty Ltd** October 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - September 2020

Prepared for Ashton Coal Operations Pty Ltd October 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Senior Acoustic Consultant

12 October 2020

Monthly attended noise monitoring - September 2020

Report Number	
H190832 RP9	
Client	
Ashton Coal Operations Pty Ltd	
Date	
12 October 2020	
Version	
v1-0 Final	
Prepared by	Approved by
	¥ =
1 Ada	Msc
_, ,,	1017
Lucas Adamson	Katie Teyhan

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Associate

12 October 2020

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Introd	uction	1
2	Glossa	ry of acoustic terms	2
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Assess	ment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	g
	4.4	Determination of stability category	g
5	Revie	v of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Concl	usion	14
Refe	erences		15
App	endice		
App	endix A	Project approval extract	A.1
App	endix E	EPL extract	B.1
Арр	endix C	Calibration certificates	C.2
Tabl	es		
Tabl	e 2.1	Glossary of acoustic terms	2
Tabl	e 2.2	Perceived change in noise	3
Tabl	e 3.1	Noise impact assessment criteria	4
Tabl	e 3.2	One-third octave low-frequency noise thresholds	6
Tabl	e 4.1	Attended noise monitoring locations	7
Tabl	e 4.2	Stability categories and temperature lapse rates	10
Tabl	e 5.1	Ashton Coal attended noise monitoring results – September 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

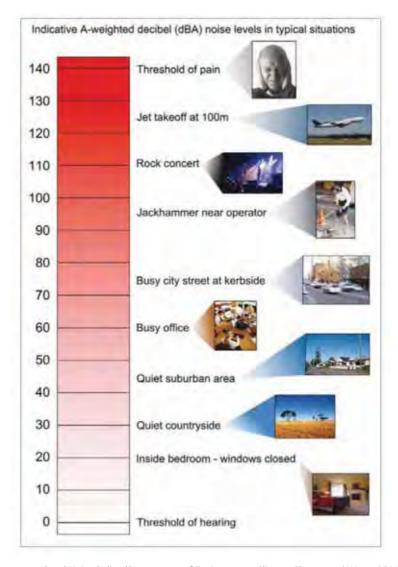
This report presents the results and findings of attended noise monitoring conducted on 23 September 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 23 September 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 23 September 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 23 September 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.


Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1 minute}	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15minute}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{\text{Ceq},15 \text{ minute}}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment	
up to 2	not perceptible	
3	just perceptible	
5	noticeable difference	
10	twice (or half) as loud	
15	large change	
20	four times (or quarter) as loud	

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
А	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	1.5 ≤ ΔT < 4.0	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 23 September 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be not applicable during the second measurement due to the presence of wind speeds greater than 3m/s at the time of the measurement.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

At all locations where site noise was audible, Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable.

Ashton Coal attended noise monitoring results – September 2020

Table 5.1

Exceedance, Comments		Ashton Coal mine hum consistently audible with engine revs on occasion. Other mines in the vicinity, insects, frogs and traffic on the New England Highway consistently audible. Wind in foliage and resident noise occasionally audible.	Ashton Coal mine hum consistently audible with engine revs on occasion. Other mines in the vicinity, insects, frogs and traffic on the New England Highway consistently audible. Livestock, wind in foliage and dogs barking occasionally audible.	Ashton Coal mine hum consistently audible. Other mines in the vicinity, insects, frogs, powerline hum and traffic on the New England Highway consistently audible. Car passby audible for approximately two minutes.
Exceedan	dВ	Ξ	N/A	ΞZ
Meteorological	conditions ³ limits apply (Y/N)	2.9 m/s @ 298° E class stability 0.8°C/100m VTG Y	3.4 m/s @ 293° E class stability 0.8°C/100m VTG N	2.9 m/s @ 285° E class stability -0.4°C/100m VTG Y
Noise limits, dB	L _{Amax} ²	46	46	46
Noise li	Laeq	36	36	36
ons, dB	Laeq Lamax² Laeq	39	40	26
Site contributions, dB		36	36	26
Site co	LFN mod. factor ¹	Ē	Ë	Ē
	Lceq	62	62	57
	La1 Lamax	09	55	99
rels, dB	L _{A1}	28	53	52
Total noise levels, dB	L _{A10}	54	49	43
Totalı	L _{Aeq}	20	46	45
	L _{A90}	44	43	33
	Lamin	41	33	30
	Start time	22:02	22:20	22:41
	Date	23/9	23/9	23/9
	Location	N2	N 3	A

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

3. Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

4. IA = inaudible.5. N/A = not applicable.

12

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent mine hum and engine revs on occasion. The Ashton Coal mine noise contribution was estimated at up to 36 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated 39 dB L_{Amax}. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, wind in foliage and resident noise.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 37 dB ($L_{Aeq,15 \, minute}$ 40 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent mine hum and engine revs on occasion. The Ashton Coal mine noise contribution was estimated at up to 36 dB L_{Aeq,15 minute}. Engine revs from site generated an estimated 40 dB L_{Amax}. Ashton Coal noise contributions would have complied with the DC and EPL noise limits, had they applied. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, livestock, wind in foliage and a dog barking.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 37 dB ($L_{Aeq,15 \, minute}$ 40 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were audible during the entire operator-attended noise survey including consistent mine hum. The Ashton Coal mine noise contribution was estimated at up to 26 dB LAeq,15 minute. Mine hum from site generated an estimated 26 dB LAmax. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, traffic on the New England Highway, insects, frogs, powerline hum and a car passby.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 28 dB ($L_{Aeq,15\,minute}$ 31 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 23 September 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be not applicable during the second measurement due to the presence of wind speeds greater than 3m/s at the time of the measurement.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)				
Level 1:	NA	N	93.84	990.59	2.82		
Level 2:	NA	N	NA	NA	NA		
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %		
Uncertainty (at 95% c.l.) k=2							

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix J

Monthly attended noise monitoring report - October 2020

Ashton Coal Monthly attended noise monitoring October 2020 **Prepared for Ashton Coal Operations Pty Ltd** November 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - October 2020

Prepared for Ashton Coal Operations Pty Ltd November 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Monthly attended noise monitoring - October 2020

Report Number	
H190832 RP10	
Client	
Ashton Coal Operations Pty Ltd	
Date	
10 November 2020	
Version	
v1-0 Final	
Prepared by	Approved by
L. Add	Msc

Lucas AdamsonSenior Acoustic Consultant
10 November 2020

Katie Teyhan Associate 10 November 2020

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

_	IIILIO	duction	1
2	Gloss	ary of acoustic terms	2
3	Noise	limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	sment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	w of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	13
	5.4	N4 - South of New England Highway	13
6	Conc	lusion	14
Ref	erence	S	15
Apı	pendice	es	
	oendix .		A.1
App	pendix	B EPL extract	B.1
App	oendix	C Calibration certificates	C.2
Tab	ales.		
	ole 2.1	Glossary of acoustic terms	2
Tab	le 2.2	Perceived change in noise	3
Tab	le 3.1	Noise impact assessment criteria	4
Tab	le 3.2	One-third octave low-frequency noise thresholds	6
Tab	le 4.1	Attended noise monitoring locations	7
Tab	le 4.2	Stability categories and temperature lapse rates	10
Tab	le 5.1	Ashton Coal attended noise monitoring results – October 2020	12

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

This report presents the results and findings of attended noise monitoring conducted on 27 October 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 27 October 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 21 November 2019 (current as of 27 October 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 10 October 2017 (current as of 27 October 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.

Table 2.1 Glossary of acoustic terms

Term	Description						
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.						
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.						
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.						
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.						
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.						
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.						
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.						
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.						
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{Ceq,15 minute}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.						
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.						
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.						
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.						
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.						

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment
up to 2	not perceptible
3	just perceptible
5	noticeable difference
10	twice (or half) as loud
15	large change
20	four times (or quarter) as loud

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56		
		Easting	Northing	
N2	Camberwell Village (west)	320297	6405670	
N3	Camberwell Village (north east)	320554	6405839	
N4	South of New England Highway	319776	6404101	

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 27 October 2020.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfl one-third octave low-frequency noise thresholds. Measured noise levels did not exceed the relevant LFN thresholds during any of the measurements where Ashton Coal was audible. Therefore, in accordance with the NPfl, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable, at all monitoring locations.

Ashton Coal attended noise monitoring results – October 2020

Table 5.1

Exceedance, Comments	dB	Nil Ashton Coal inaudible. Other mines in the vicinity, insects, frogs and traffic on the New England Highway consistently audible. Bird noise and distant dogs barking occasionally audible.	Ashton Coal inaudible. Other mines in the vicinity, insects, frogs and dripping water at nearby residence consistently audible. Traffic on the New England Highway frequently audible. Distant dogs barking and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Nil Ashton Coal inaudible. Other mines in the vicinity, insects, frogs and traffic on the New England Highway consistently audible.
		(5)		
Meteorological	conditions ³ limits apply (Y/N)	1.7 m/s @ 104° E class stability -0.1°C/100m VTG Y	1.8 m/s @ 112° E class stability 0.1°C/100m VTG Y	1.7 m/s @ 101° E class stability 0.3°C/100m VTG Y
its, dB	L _{Amax} 2	46	46	46
Noise limits, dB	L _{Aeq}	36	36	36
ns, dB	Laeq Lamax	₫	₫	⊴
tributio	LAeq	₫	₫	⊴
Site contributions, dB	LFN mod. factor ¹	Ë	Ē	Ë
	Lcea	26	54	26
	LAmax	26	64	47
els, dB	L _{A1}	53	45	47
Total noise levels, dB	L A10	46	41	46
Total n	LAeq	43	30	44
	L _{A90}		35	42
	LAmin	31	32	38
	Start time	22:00	22:17	22:39
	Date	27/10 22:00	27/10 22:17	27/10 22:39
	Location	N2	N3	N

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfl (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1}\,\text{minute}}$ are interchangeable.

3. Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather stations are in proper working order and calibrated to manufacturers requirements.

5. N/A = not applicable.

12

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 35 dB L_{A90} , the Ashton Coal $L_{Aeq,15 \, minute}$ mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, distant dogs barking and bird noise.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <27 dB ($L_{Aeq,15 \, minute}$ <30 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 35 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, dripping water, traffic on the New England Highway, dogs barking and a train on the main line (unrelated to Ashton Coal).

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 28 dB ($L_{Aeq,15 \, minute}$ 31 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 42 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs and traffic on the New England Highway.

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <27 dB ($L_{Aeq,15 \, minute}$ <30 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 27 October 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (15min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix K

Monthly attended noise monitoring report - November 2020

Ashton Coal Monthly attended noise monitoring November 2020 **Prepared for Ashton Coal Operations Pty Ltd** December 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - November 2020

Prepared for Ashton Coal Operations Pty Ltd December 2020

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Senior Acoustic Consultant

11 December 2020

Monthly attended noise monitoring - November 2020

Report Number	
H190832 RP11	
Client	
Ashton Coal Operations Pty Ltd	
Date	
11 December 2020	
Version	
v1-0 Final	
Prepared by	Approved by
0.	117-1
L. A80	Msc
	. /
Lucas Adamson	Katie Teyhan

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

Associate

11 December 2020

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

_	IIIII	duction	1		
2	2 Glossary of acoustic terms				
3	Noise	e limits	4		
	3.1	Operational and sleep disturbance noise limits	4		
	3.2	Cumulative noise criteria	5		
	3.3	Low frequency noise criteria	5		
4	Asses	ssment methodology	7		
	4.1	Attended noise monitoring	7		
	4.2	Instrumentation	7		
	4.3	Attended noise monitoring exceedance procedure	9		
	4.4	Determination of stability category	9		
5	Revie	ew of data and discussion	11		
	5.1	Summary	11		
	5.2	N2 - Camberwell Village (west)	13		
	5.3	N3 - Camberwell Village (north east)	14		
	5.4	N4 - South of New England Highway	15		
6	Conc	lusion	16		
Ref	erence	s	17		
Apı	pendice	es			
App	endix	A Project approval extract	A.1		
App	endix	B EPL extract	B.1		
Арі	pendix	C Calibration certificates	C.2		
Tab	ıles				
	le 2.1	Glossary of acoustic terms	2		
Tab	le 2.2	Perceived change in noise	3		
Tab	le 3.1	Noise impact assessment criteria	4		
Tab	le 3.2	One-third octave low-frequency noise thresholds	6		
Tak	le 4.1	Attended noise monitoring locations	7		
Tak	le 4.2	Stability categories and temperature lapse rates	10		
Tak	le 5.1	Ashton Coal attended noise monitoring results – November 2020	12		

Figures

Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8
Figure 5.1	N2 total measured one-third octave band frequencies	13
Figure 5.2	N3 total measured one-third octave band frequencies	14
Figure 5.3	N4 total measured one-third octave band frequencies	15

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

This report presents the results and findings of attended noise monitoring conducted on 24 and 25 November 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 24 November 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 3 February 2020 (current as of 24 November 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 23 September 2020 (current as of 24 November 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.

Table 2.1 Glossary of acoustic terms

Term	Description
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{Ceq,15 minute}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment		
up to 2	not perceptible		
3	just perceptible		
5	noticeable difference		
10	twice (or half) as loud		
15	large change		
20	four times (or quarter) as loud		

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Description	MGA56	
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 24 and 25 November 2020. Noise from Ashton Coal operations were not audible during any operator-attended noise survey.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfI one-third octave low-frequency noise thresholds. Total measured noise levels did not exceed the relevant LFN thresholds during any of the measurements. Therefore, in accordance with the NPfI, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable, at all monitoring locations.

Ashton Coal attended noise monitoring results – November 2020

Table 5.1

Exceedance, Comments		Ashton Coal inaudible. Other mines in the vicinity, insects and frogs consistently audible. Traffic on the New England Highway and bird noise frequently audible. Car passby and nearby animals occasionally audible. Train horn (unrelated to Ashton Coal) briefly audible.	Ashton Coal inaudible. Other mines in the vicinity, insects and frogs consistently audible. Traffic on the New England Highway frequently audible. Bird noise and nearby animals occasionally audible. Train on the main line (unrelated to Ashton Coal) audible for approximately 10 minutes.	Ashton Coal inaudible. Other mines in the vicinity, powerline hum, insects and frogs consistently audible. Traffic on the New England Highway and livestock frequently audible.
Exceeda	dB	Ξ Z	Z	Ž
Meteorological	conditions³ limits apply (Y/N)	2.1 m/s @ 127° E class stability -0.3°C/100m VTG Y	2.1 m/s @ 122° E class stability -0.3°C/100m VTG Y	1.9 m/s @ 126° E class stability -0.1°C/100m VTG Y
nits, dB	L _{Amax} 2	46	46	46
Noise limits, dB	Laeq	36	36	36
ns, dB	Laeq Lamax ² Laeq	₫	<u>4</u>	₫
Site contributions, dB	LAeq	⋖	₹	⋖
Site con	LFN mod. factor ¹	Ë	Ë	Ξ
	Lceq	26	51	20
	La1 Lamax	89	53	26
els, dB	L _{A1}	62	41	45
Total noise levels, dB	L _{A10}	53	37	36
Total n	LAeq	20	35	34
	L _{A90}	88	31	29
	Lamin	31	29	26
	emit tinet	23:56	00:13	00:33
	Date	24/11	25/11 00:13	25/11
	Location	N2	8 2	V4

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfl (refer Section 3.3). Notes:

2. For assessment purposes the Land the Land minute are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.

^{5.} N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 38 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, bird noise, a car passby, nearby animals and a train horn (unrelated to Ashton Coal). A graph of the total linear noise levels measured in each one-third octave frequency bands is shown in Figure 5.1.

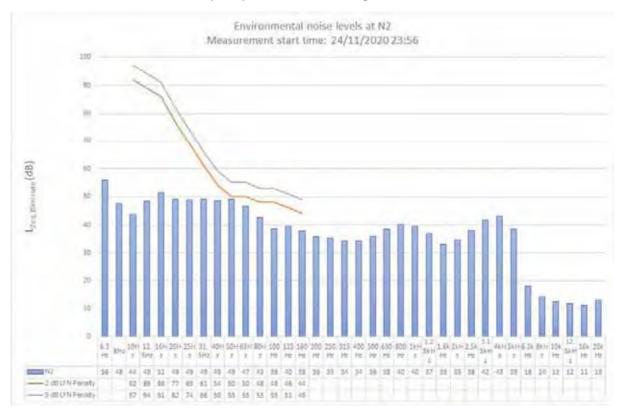


Figure 5.1 N2 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <23 dB ($L_{Aeq,15\ minute}$ <26 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 31 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, bird noise, nearby animals and a train on the main line (unrelated to Ashton Coal). A graph of the total linear noise levels measured in the one-third octave frequency bands is shown in Figure 5.2.

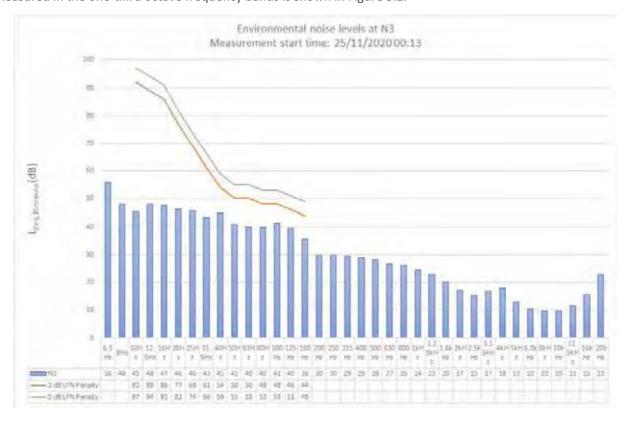


Figure 5.2 N3 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <23 dB ($L_{Aeq,15\ minute}$ <26 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 29 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, powerline hum, insects, frogs, traffic on the New England Highway and livestock. A graph of the total linear noise levels measured in one-third octave frequency bands is shown below in Figure 5.3.

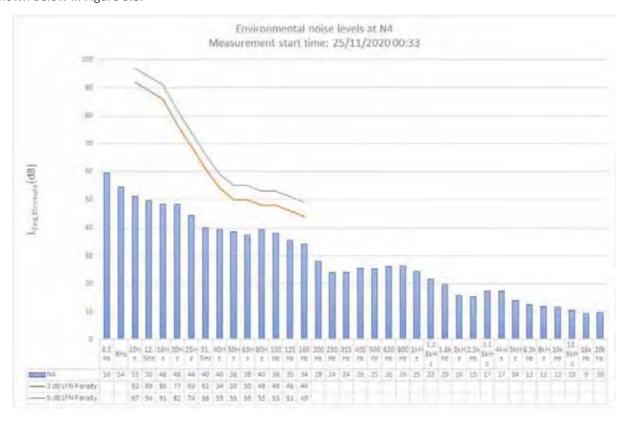


Figure 5.3 N4 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ 22 dB ($L_{Aeq,15\ minute}$ 25 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 24 and 25 November 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements

HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix L

Monthly attended noise monitoring report - December 2020

H190832 | RP#13 | v1

Ashton Coal Monthly attended noise monitoring December 2020 **Prepared for Ashton Coal Operations Pty Ltd** January 2021

Servicing projects throughout Australia and internationally

SYDNEY

Ground floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 1, 146 Hunter Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 10, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 1, 70 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

187 Coventry Street South Melbourne VIC 3205

PERTH

PO Box 8155 Fremantle WA 6160

CANBERRA

PO Box 9148 Deakin ACT 2600

Ashton Coal

Monthly attended noise monitoring - December 2020

Prepared for Ashton Coal Operations Pty Ltd January 2021

EMM Newcastle Level 3, 175 Scott Street Newcastle NSW 2300

T 02 4907 4800

E info@emmconsulting.com.au

www.emmconsulting.com.au

Ashton Coal

Monthly attended noise monitoring - December 2020

Report Number	
H190832 RP12	
Client	
Ashton Coal Operations Pty Ltd	
Date	
19 January 2021	
Version	
v1-0 Final	
Prepared by	Approved by
L. Acc	MSC

Lucas Adamson Senior Acoustic Consultant 19 January 2021 **Katie Teyhan** Associate 19 January 2021

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Intro	1	
2	Gloss	2	
3	Noise	e limits	4
	3.1	Operational and sleep disturbance noise limits	4
	3.2	Cumulative noise criteria	5
	3.3	Low frequency noise criteria	5
4	Asses	ssment methodology	7
	4.1	Attended noise monitoring	7
	4.2	Instrumentation	7
	4.3	Attended noise monitoring exceedance procedure	9
	4.4	Determination of stability category	9
5	Revie	ew of data and discussion	11
	5.1	Summary	11
	5.2	N2 - Camberwell Village (west)	13
	5.3	N3 - Camberwell Village (north east)	14
	5.4	N4 - South of New England Highway	15
6	Conc	lusion	16
Ref	erence	S	17
Apı	pendice	28	
Apı	pendix	A Project approval extract	A.1
Apı	pendix	B EPL extract	B.1
Арі	pendix	C Calibration certificates	C.2
Tab	oles		
Tak	ole 2.1	Glossary of acoustic terms	2
Tak	ole 2.2	Perceived change in noise	3
Tak	ole 3.1	Noise impact assessment criteria	4
Tak	ole 3.2	One-third octave low-frequency noise thresholds	6
Tak	ole 4.1	Attended noise monitoring locations	7
Tak	ole 4.2	Stability categories and temperature lapse rates	10

Table 5.1	Ashton Coal attended noise monitoring results – December 2020	12
Figures		
Figure 2.1	Common noise levels	3
Figure 4.1	Noise monitoring locations and Ashton colliery boundary	8
Figure 5.1	N2 total measured one-third octave band frequencies	13
Figure 5.2	N3 total measured one-third octave band frequencies	14
Figure 5.3	N4 total measured one-third octave band frequencies	15

1 Introduction

EMM Consulting Pty Limited (EMM) was engaged to complete monthly attended noise surveys on behalf of Ashton Coal Operations Pty Ltd (Ashton Coal).

The purpose of the monitoring was to address requirements of the approved Ashton Coal Noise Management Plan (NMP), prepared to satisfy the requirements of the Development Consent DA 309-11-2001-I (DC) and Environment Protection License (EPL) 11879.

This report presents the results and findings of attended noise monitoring conducted on 23 December 2020.

The following material was referenced as part of this assessment:

- Department of Planning, Industry and Environment (DPIE), Development Consent 309-11-2001-I, as modified on 20 June 2016 (current as of 23 December 2020);
- Environment Protection Authority (EPA), Environment Protection License 11879, as varied on 3 February 2020 (current as of 23 December 2020);
- Ashton Coal Project Noise Management Plan (NMP), approved by DPIE on 23 September 2020 (current as of 23 December 2020);
- NSW EPA, Industrial Noise Policy (INP), 2000;
- NSW EPA, Industrial Noise Policy Application notes, 2017; and
- NSW EPA, Noise Policy for Industry (NPfI), 2017.

2 Glossary of acoustic terms

Several technical terms are discussed in this report. These are explained in Table 2.1.

Table 2.1 Glossary of acoustic terms

Term	Description					
dB	Noise is measured in units called decibels (dB). There are several scales for describing noise, the most common being the 'A-weighted' scale. This attempts to closely approximate the frequency response of the human ear.					
L _{A1}	The 'A-weighted' noise level which is exceeded 1% of the time.					
L _{A1,1} minute	The 'A-weighted' noise level exceeded for 1% of the specified time period of 1 minute.					
L _{A10}	The 'A-weighted' noise level which is exceeded 10% of the time. It is approximately equivalent to the average of maximum noise level.					
L _{A90}	Commonly referred to as the background noise level. The 'A-weighted' noise level exceeded 90% of the time.					
L _{Aeq}	The energy average noise from a source. This is the equivalent continuous 'A-weighted' sound pressure level over a given period. The $L_{Aeq,15 \text{ minute}}$ descriptor refers to an L_{Aeq} noise level measured over a 15-minute period.					
L _{Amin}	The minimum 'A-weighted' noise level received during a measuring interval.					
L _{Amax}	The maximum root mean squared 'A-weighted' sound pressure level (or maximum noise level) received during a measuring interval.					
L _{Ceq}	The equivalent continuous 'C-weighted' sound pressure level over a given period. The $L_{Ceq,15 minute}$ descriptor refers to an L_{Ceq} noise level measured over a 15 minute period. C-weighting can be used to measure low frequency noise.					
Day period	Monday – Saturday: 7 am to 6 pm, on Sundays and Public Holidays: 8 am to 6 pm.					
Evening period	Monday – Saturday: 6 pm to 10 pm, on Sundays and Public Holidays: 6 pm to 10 pm.					
Night period	Monday – Saturday: 10 pm to 7 am, on Sundays and Public Holidays: 10 pm to 8 am.					
Temperature inversion	A meteorological condition where the atmospheric temperature increases with altitude.					

It is useful to have an appreciation of decibels (dB), the unit of noise measurement. Table 2.2 gives an indication as to what an average person perceives about changes in noise levels. Examples of common noise levels are provided in Figure 2.1.

Table 2.2 Perceived change in noise

Change in sound pressure level (dB)	Perceived change in noise in surrounding environment		
up to 2	not perceptible		
3	just perceptible		
5	noticeable difference		
10	twice (or half) as loud		
15	large change		
20	four times (or quarter) as loud		

Source: Road Noise Policy (Department of Environment, Climate Change and Water 2011)

Figure 2.1 Common noise levels

3 Noise limits

3.1 Operational and sleep disturbance noise limits

Ashton Coal noise limits are provided in Table 1, Condition 2 of Appendix 6 of the DC and Condition L4.1 of the EPL. Extracts of the relevant sections of the DC and EPL pertaining to noise are provided in Appendix A and B, respectively. The approved NMP adopts three attended noise monitoring locations that are representative of residences outlined in the DC. The noise monitoring locations and relevant criteria are summarised in Table 3.1.

Table 3.1 Noise impact assessment criteria

Monitoring location	Day	Evening	Night	Night
	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{Aeq,15 minute} , dB	L _{A1,1 minute} , dB
N2	38	38	36	46
N3	38	38	36	46
N4	38	38	36	46

The DC and the EPL specify the following meteorological conditions under which noise limits do not apply:

- during periods of rain or hail;
- average wind speed at microphone height exceeds 5 m/s;
- wind speeds greater than 3 m/s at 10 metres above ground level; and
- temperature inversion conditions greater than 3°C/100m.

For this assessment, the recorded L_{Amax} has been used as a conservative estimate of the $L_{A1,1\,minute}$. The INP application notes state that the EPA accepts sleep disturbance analysis based on either the $L_{A1,1\,minute}$ or L_{Amax} metrics (EPA 2013), with use of L_{Amax} resulting in a more conservative assessment.

The DC and EPL state that modification factor corrections in the application notes to the INP (2017) shall be applied to the measured mine noise levels where applicable. The application notes to the INP state that Fact Sheet C of the NPfl (EPA 2017) now applies regarding the application of modifying factors.

3.2 Cumulative noise criteria

Ashton Coal cumulative noise limits are provided in Condition 5 and Condition 6 of Schedule 3 of the DC. An extract of the conditions relevant to cumulative noise criteria is provided here.

5. The Applicant must implement all reasonable and feasible measures to ensure that the noise generated by the Ashton Mine Complex combined with the noise generated by other mines in the vicinity does not exceed the criteria in Table 4 at any residence on any privately-owned land or on more than 25 per cent of any privately-owned land (except for the noise affected residential receivers in Table 1).

Table 4: Cumulative Noise Criteria dB(A) LAeq (period)

Location	Day	Evening	Night
Camberwell Village	55	45	40
All other privately-owned land	50	45	40

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

6. If the cumulative noise generated by the Ashton Mine Complex combined with the noise generated by other coal mines in the vicinity exceeds the criteria in Table 5 at any residence on privately-owned land or more than 25 per cent of any privately-owned land (except for the noise-affected residential receivers ion Table 1), then upon receiving a written request from the landowner, the Applicant must, together with the relevant mines, acquire the land on as equitable basis as possible, in accordance with the procedures in conditions 7 and 8 of schedule 4.

Table 5: Cumulative Noise Acquisition Criteria dB(A) L_{Aeq (period)}

Location	Day	Evening	Night
Camberwell Village	60	50	45
All other privately-owned land	55	50	45

Cumulative noise is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

3.3 Low frequency noise criteria

Condition 3 of Appendix 8 of the DC states that noise generated by Ashton Coal is to be measured in accordance with the relevant requirements of the INP. The INP application notes state that Section 4 of the INP has been withdrawn and the modifying factor adjustments outlined in Fact Sheet C of the NPfI are to be used when assessing the characteristics of a noise source.

Fact sheet C of the NPfI (EPA 2017) provides guidelines for applying modifying factor corrections to account for low frequency noise emissions. The NPfI specifies that a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels identifies the potential for an unbalanced spectrum and potential increased annoyance.

Where a difference of 15 dB or more between site 'C-weighted' and site 'A-weighted' noise emission levels is identified, the one-third octave noise levels recorded should be compared to the values in Table C2 of the NPfl (EPA 2017), which has been reproduced in Table 3.2 below.

Table 3.2 One-third octave low-frequency noise thresholds

One-third octave L_{Zeq,15 minute} threshold level

Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB (Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

The following modifying factor correction is to be applied where the site 'C-weighted' and site 'A-weighted' noise emission level is 15 dB or more and:

- where any of the one-third octave noise levels in Table 3.2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period; or
- where any of the one-third octave noise levels in Table 3.2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dB positive adjustment to measured/predicted A-weighted levels applies for the evening/night period.

Hence, where relevant throughout each survey the operator has estimated the difference between site 'C-weighted' and site 'A-weighted' noise emission levels by matching audible sounds with the response of the analyser (L_{Ceq} - L_{Aeq}). Where this was deemed to be 15 dB or greater, the measured one-third octave frequencies have been compared to the values in Table 3.2 to identify the relevant modifying factor correction (if applicable). This method has been applied to this assessment as presented in Section 5.

It is of note that the NPfI (EPA 2017) states that low-frequency noise corrections only apply under the standard or noise-enhancing (i.e. applicable) meteorological conditions.

4 Assessment methodology

4.1 Attended noise monitoring

To quantify noise emissions from Ashton Coal, 15-minute attended noise monitoring surveys were completed at representative locations as per the approved NMP. Noise monitoring locations and their coordinates are listed in Table 4.1 and are shown in Figure 4.1.

Table 4.1 Attended noise monitoring locations

Monitoring location	Ionitoring location Description		.56
		Easting	Northing
N2	Camberwell Village (west)	320297	6405670
N3	Camberwell Village (north east)	320554	6405839
N4	South of New England Highway	319776	6404101

Attended noise monitoring is scheduled to be "unannounced" and, to EMM's knowledge, Ashton Coal were not aware of the monitoring prior to its commencing. Noise monitoring is avoided during any scheduled downtime or major maintenance. Information provided by Ashton Coal after the noise monitoring was completed confirmed that regular operations were occurring during the monitoring period.

Where possible throughout each survey, the operator has quantified the contribution of each significant noise source. This was done by matching audible sounds with the response of the analyser (where applicable) and/or via post-analysis of data (e.g. low pass filtering).

4.2 Instrumentation

A Brüel & Kjær 2250 Type 1 sound analyser (s/n 2759405) was used to conduct 15-minute attended measurements and record 1/3 octave frequency and statistical noise indices. The sound analyser was calibrated before and on completion of the survey using a Brüel & Kjær type 4230 calibrator (s/n 1276091). The instrumentation's calibration certificates are provided in Appendix C.

KEY

☐ Site boundary

Noise monitoring location

Meteorological station

– – Rail line

— Main road

— Local road

Watercourse/drainage line

Cadastral boundary

Noise monitoring locations and Ashton colliery boundary

Ashton Coal Monthly attended noise monitoring Figure 4.1

4.3 Attended noise monitoring exceedance procedure

Ashton Coal has developed an attended monitoring exceedance procedure that is to be implemented if measurements show Ashton Coal noise emissions are above the relevant noise criteria. This response plan is implemented if site noise levels are determined to be above the relevant noise criteria and when noise limits are applicable due to suitable meteorological conditions. The following noise management initiatives are implemented:

- Consultant will record the reading and advise Ashton Coal of the exceedance. Ashton Coal will implement remedial action as required.
- A follow up measurement is to be conducted (within 75 minutes after the first measurement and no earlier than 10 pm).
- If the follow up measurement indicates that site noise levels are above the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has failed and is deemed a 'noise affected night' at that location. An additional monitoring test should be scheduled to be undertaken at the same location within one week and move on to the next monitoring location.
- If the follow up measurement indicates that site noise levels are below the relevant noise criteria and that noise limits are applicable, the consultant will record the result, note the site has passed, schedule an additional monitoring test to be undertaken at the location within one week and move on to the next monitoring location.

4.4 Determination of stability category

As per Condition L4.4, this assessment determined the stability categories throughout the attended monitoring period using the direct measurement method as per Appendix E2 of the INP (EPA 2000).

The temperature lapse rate between the two weather stations (M1 – Sentinex Unit 40 located in Camberwell Village and M2 – Ashton Coal 'repeater' meteorological station located in the north eastern open cut (NEOC) area) was calculated using the following formula:

Temperature lapse rate = $(\Delta T) \times (100/(\Delta H))$

Where:

- ΔT = temperature measured at M2 (at 10 metres above ground level) minus temperature measured at M1 (at 10 metres above ground level); and
- ΔH = the vertical height difference between M2 and M1 (equal to 73 metres).

Table E5 of the INP (EPA 2000) is reproduced in Table 4.2 and presents the stability categories and associated ranges in temperature lapse rates.

 Table 4.2
 Stability categories and temperature lapse rates

Stability category	Temperature lapse rate (ΔT) (°C/100 m)	
A	ΔT < -1.9	
В	-1.9 ≤ ΔT < -1.7	
С	-1.7 ≤ ΔT < -1.5	
D	-1.5 ≤ ΔT < -0.5	
E	-0.5 ≤ ΔT < 1.5	
F	$1.5 \le \Delta T < 4.0$	
G	ΔT ≥ 4.0	

Source: INP (EPA 2000).

Other meteorological data, such as wind speed, has been sourced directly from meteorological station M2 since it is more representative of the weather conditions nearer to the noise sources.

5 Review of data and discussion

5.1 Summary

Results of attended noise measurements are summarised in Table 5.1. Ashton Coal contribution and total mine noise were determined for each survey using in-field observations and post-analysis of data as required (e.g. removing higher frequencies that are not mine related i.e. above 630 Hz). Attended monitoring was completed on 23 December 2020. Noise from Ashton Coal operations were not audible during any operator-attended noise survey.

The meteorological data for the monitoring period was sourced from Ashton Coal's two weather stations (M1 and M2) to determine applicability of criteria in accordance with the DC and EPL. Noise limits were found to be applicable during all three measurements.

Low frequency noise was conservatively assessed by comparison of the total measured one-third octave L_{Aeq} noise levels to the NPfI one-third octave low-frequency noise thresholds. Total measured noise levels did not exceed the relevant LFN thresholds during any of the measurements. Therefore, in accordance with the NPfI, LFN modifying factors were found to be not relevant and hence were not applied to estimated site noise levels at any of the locations.

Ashton Coal noise contributions and cumulative mine noise contributions were below (i.e. complied with) the relevant noise limits, where applicable, at all monitoring locations.

Ashton Coal attended noise monitoring results – December 2020

Table 5.1

Exceedance, Comments		Ashton Coal inaudible. Other mines in the vicinity, insects and frogs consistently audible. Traffic on the New England Highway frequently audible. Distant dogs barking, livestock, wind in foliage and nearby animals occasionally audible.	Ashton Coal inaudible. Other mines in the vicinity, insects and frogs consistently audible. Traffic on the New England Highway frequently audible. Wind in foliage, resident noise and a train on the main line (unrelated to Ashton Coal) occasionally audible.	Ashton Coal inaudible. Other mines in the vicinity, insects and frogs consistently audible. Traffic on the New England Highway frequently audible. Distant dogs barking and bird noise occasionally audible.	
Exceedance,	dВ	Z	Ē	Ē	
Meteorological	conditions ³ limits apply (Y/N)	1.9 m/s @ 113° E class stability -0.3°C/100m VTG Y	1.9 m/s @ 116° E class stability -0.1°C/100m VTG Y	2.0 m/s @ 113° E class stability 0.1°C/100m VTG Y	
Noise limits, dB	L _{Amax} ²	46	46	46	
Noise li	L _{Aeq}	36	36	36	
ns, dB	Laeq Lamax ²	₫	₫	⊴	
Site contributions, dB	L _{Aeq}	⊴	⊴	⊴	
Site cor	LFN mod. factor ¹	Ë	Ë	Ē	
	Lcea	54	51	55	
	La1 Lamax Lceq	62	45	09	
els, dB	L _{A1}	51	41	44	
Total noise levels, dB	L _{A10}	46	38	40	
Total n	L _{Aeq}	43	35	36	
	L _{A90}	83	30	35	
	Lamin	28	27	32	
	emit time	23/12 22:03	23/12 22:20	22:41	
	Date	23/12	23/12	23/12	
Location		N2	e N	44 4	

1. Modifying factor correction for low frequency noise in accordance with Fact Sheet C of the NPfI (refer Section 3.3). Notes:

2. For assessment purposes the L_{Amax} and the $L_{\text{A1,1 minute}}$ are interchangeable.

12

^{3.} Meteorological data were taken as an average over 15 minutes from the Ashton Coal weather station (Refer to Section 5.1). VTG assumes the temperature sensors on the two weather

stations are in proper working order and calibrated to manufacturers requirements.

^{4.} IA = inaudible.5. N/A = not applicable.

5.2 N2 - Camberwell Village (west)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 33 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, distant dogs barking, livestock and wind in foliage). A graph of the total linear noise levels measured in each one-third octave frequency bands is shown in Figure 5.1.

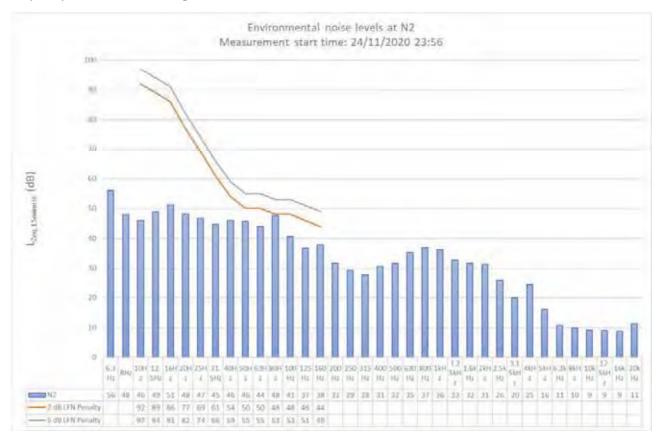


Figure 5.1 N2 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N2. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <20 dB ($L_{Aeq,15\ minute}$ <20 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.3 N3 - Camberwell Village (north east)

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 30 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, wind in foliage, resident noise and a train on the main line (unrelated to Ashton Coal). A graph of the total linear noise levels measured in the one-third octave frequency bands is shown in Figure 5.2.

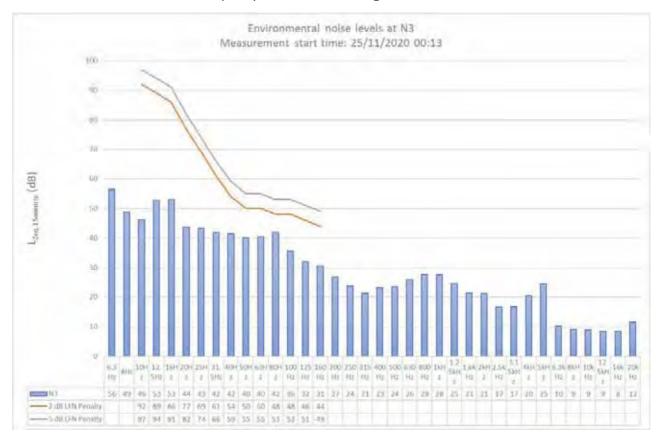


Figure 5.2 N3 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N3. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <20 dB ($L_{Aeq,15 \, minute}$ <20 dB - 3 dB as per NPfI methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

5.4 N4 - South of New England Highway

Ashton Coal operations were inaudible during the entire operator-attended noise survey. Given this and the measured background noise level of 35 dB L_{A90}, the Ashton Coal L_{Aeq,15 minute} mine noise contribution was below the relevant noise limit. Ashton Coal noise contributions complied with the DC and EPL noise limits. Other ambient noise sources included other mines in the vicinity, insects, frogs, traffic on the New England Highway, distant dogs barking and bird noise. A graph of the total linear noise levels measured in one-third octave frequency bands is shown below in Figure 5.3.

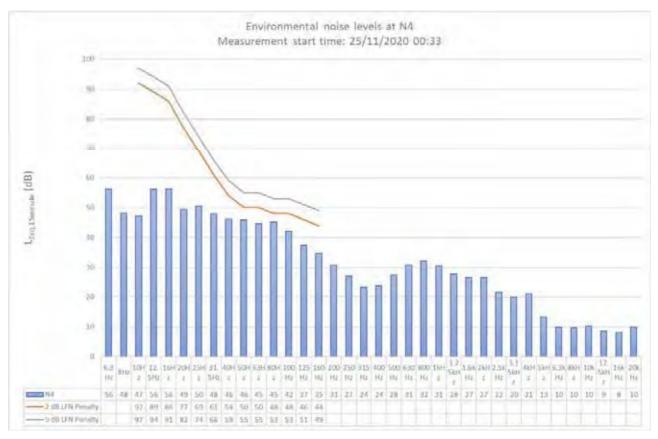


Figure 5.3 N4 total measured one-third octave band frequencies

Mining operations in the vicinity were consistently audible during the operator-attended noise survey at monitoring location N4. The total cumulative mine noise contribution was estimated to be $L_{Aeq,night}$ <20 dB ($L_{Aeq,15 \, minute}$ <23 dB - 3 dB as per NPfl methodology) which is below the cumulative mine noise night-time criterion (i.e. $L_{Aeq,night}$ 40 dB). Therefore, the total cumulative mine $L_{Aeq,night}$ noise contribution was below the cumulative mine noise criterion.

6 Conclusion

EMM has completed a review of mine noise from Ashton Coal within the surrounding community based on attended measurements conducted on 23 December 2020.

The applicability of noise limits was assessed with reference to Ashton Coal's two meteorological stations (M1 and M2) located to the east of the site. Noise limits were found to be applicable during all three measurements.

The assessment of noise contributions from site included consideration of modifying factors for noise characteristics where relevant and in accordance with the INP.

Ashton Coal noise contributions and cumulative mine noise contributions were at or below (satisfied) the relevant noise limits at all monitoring locations for this round of monitoring.

References

Ashton Coal Noise Management Plan, 2017.

NSW Department of Planning, Industry and Environment, Development Consent DA309-11-2001-I, 2016.

NSW Environment Protection Authority, Environment Protection License 11879.

NSW Environment Protection Authority, Industrial Noise Policy, 2000.

NSW Environment Protection Authority, Industrial Noise Policy Application notes, 2017.

NSW Environment Protection Authority, Noise Policy for Industry, 2017.

Appendix A

Project approval extract

APPENDIX 6 ALTERNATE NOISE CONDITIONS

NOISE

Application

 Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1. Noise Criteria dB(A)

Receiver No.	Receiver	Day (LAcq (15min))	Evening (LANG (15 min))	Night (L _{Aeq (15min)})	Night (L _{A1 (1 min)})
	All privately-owned land	38	38	36	46

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 3 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

Upon receiving a written request from the owner of any residence on any privately-owned land where
subsequent operational noise monitoring shows the noise generated by the development exceeds the
noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise
mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in
consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) LARI (15min)

Receiver No.	Receiver	Day (L _{Aeq (18min)})	Evening (L _{Aeq (15min)})	Night (L _{Aeq (18min)})
	All privately-owned land	38	38	38

Notes.

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sels out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.

APPENDIX 8 NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

- Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 - a) during periods of rain or hail;
 - average wind speed at microphone height exceeds 5 m/s,
 - c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 - d) temperature inversion conditions greater than 3°C/100m.
- Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the
 relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as
 amended from time to time), in particular the requirements relating to:
 - a) monitoring locations for the collection of representative noise data;
 - equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.
- To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).

Appendix B

EPL extract

Environment Protection Licence

Licence - 11879

L3 Waste

- L3.1 The licensee must not cause, permit or allow any waste to be received at the premises unless specified in this licence.
- L3.2 The Licensee must not dispose of waste on the premises unless authorised by a condition of this Licence.

L4 Noise limits

L4.1 Noise from the premises must not exceed the noise limits specified in the table below.

Residences referenced in this table are from the consent DA 309-11-2001-i and summarised in the EPA reference DOC19/761196.

Location	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LAeq(1 minute)
EPA Point 13	38	38	36	46
EPA Point 14	38	38	36	46
EPA Point 15	38	38	36	46
All other privately owned residences	38	38	36	46

- L4.2 For the purpose of Condition L4.1:
 - a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,
 - b) Evening is defined as the period from 6pm to 10pm, and
 - c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays
- L4.3 The noise emission limits identified in condition L4.1 apply under the following meteorological conditions:
 - a) wind speeds up to 3m/s at 10m above ground level; and
 - b) temperature inversion conditions up to 3 degrees C/100m.
- L4.4 For the purposes of condition L4.1:
 - a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 12 must be used to determine meteorological conditions; and
 - b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017) using EPA Identification Points 12 and 32.

4 Operating Conditions

Appendix C

Calibration certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE No: 26290

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer:

B&K

Type No:

4230

Serial No: 1276091

Owner:

EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Tests Performed:

Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 µPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	93.84	990.59	2.82
Level 2:	NA	N	NA	NA	NA
Uncertainty:		1	±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 98	5% c.l.) k=2				

CONDITION OF TEST:

Ambient Pressure:

1007 hPa ±1.5 hPa Relative Humidity: 49% ±5%

Temperature:

24 °C ±2° C

Date of Calibration: 05/02/2020

Issue Date: 05/02/2020

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2017

CHECKED BY: AUTHORISED SIGNATURE:

.Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

ELECTRONICS

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18

CERTIFICATE No.: SLM 26291 & FILT 5615

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Checked by: IKB

Accredited for compliance with ISO/IEC 17025 - Calibration
The results of the tests, calibration and/or measurements included in this document are traceable to
Australian/national standards.

Accredited Lab. No. 9262
Acoustic and Vibration
Measurements

HEAD OFFICE
Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 26291 & FILT 5615

Equipment Description: Sound Level Meter

Manufacturer: B&K

Model No: 2250 Serial No: 2759405

Microphone Type: 4189 Serial No: 2888134

Preamplifier Type: ZC0032 Serial No: 16037

Filter Type: 1/3 Octave Serial No: 2759405

Comments: All tests passed for class 1.

(See over for details)

Owner: EMM Consulting

Level 3, 175 Scott Street Newcastle, NSW 2300

Ambient Pressure: 1007 hPa ±1.5 hPa

Temperature: 24 °C ±2° C Relative Humidity: 53% ±5%

Date of Calibration: 05/02/2020 Issue Date: 05/02/2020
Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: KB

AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Measurements



HEAD OFFICE

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154
Tel: (02) 96808133 Fax: (02)96808233
Mobile: 0413 809806
web site: www.acu-vib.com.au

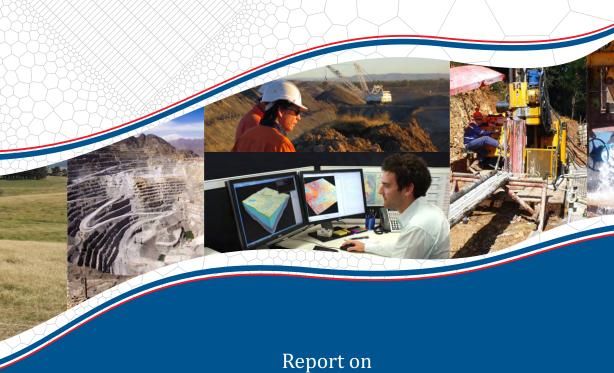
Accredited Lab. No. 9262 Page 1 of 2
Acoustic and Vibration AVCERT10 Rev. 1.3 15.05.18

Appendix 2

Annual Groundwater Monitoring Review 2020

(No. of pages including blank pages = 120)

ASHTON COAL OPERATIONS LIMITED


Ashton Coal Project

This page has intentionally been left blank

Australasian Groundwater and Environmental Consultants Pty Ltd

Yancoal Ashton Annual Groundwater

Monitoring Review 2020

Prepared for Yancoal Australia Limited

Project No. G1922L March 2021 www.ageconsultants.com.au ABN 64 080 238 642

Document details and history

Document details

Project number G1922L

Document title Yancoal – Ashton Coal – Annual Groundwater Monitoring Review 2020

Site address Camberwell NSW

File name G1922L.Yancoal_Ashton_AGMR_2020_v01.01.docx

Document status and review

Edition	Comments	Author	Authorised by	Date
v01.01	Draft	JR	BM	05/03/2021

This document is and remains the property of AGE, and may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Australasian Groundwater and Environmental Consultants Pty Ltd

Table of contents

			Page No.	
1	Introd	uction	1	
	1.1	Objective	1	
	1.2	Scope	1	
2	Physic	al setting	3	
	2.1	Climate and rainfall	3	
	2.2	Surface water	5	
	2.3	Mining	5	
	2.4	Conceptual hydrogeology	6	
	2.4.1	Hydrostratigraphy	6	
	2.4.2	Recharge	8	
	2.4.3	Groundwater flow	9	
3	Groun	dwater management plan	11	
	3.1	Groundwater monitoring network	11	
	3.2	Trigger values	13	
	3.3	Sampling methods	14	
4	Groun	dwater monitoring results	15	
	4.1	Alluvium monitoring	15	
	4.1.1	WMP compliance groundwater levels	15	
	4.1.2	Other alluvium groundwater levels		
	4.1.3	pH, electrical conductivity and major ions		
	4.1.4	Dissolved metals, select nutrients, turbidity and cyanide	28	
	4.2	Coal measure and coal measure overburden (CMOB) aquifer monitoring		
	4.2.1	Coal measure and CMOB aquifer groundwater levels		
	4.2.2	pH, electrical conductivity and major ions		
	4.2.3	Dissolved metals, select nutrients, turbidity and cyanide	34	
5	EPL 11	879 monitoring bores	35	
6	Mine ii	nflow	37	
7	Summa	ary	39	
8	References			

Table of contents (continued)

Page No.

List of figures

Figure 1.1	Study area location	2
Figure 2.1	Cumulative Rainfall Departure – Ashton Coal and Bulga	4
Figure 2.2	Singleton Super Group sequence stratigraphy (AGE, 2016)	7
Figure 2.3	Conceptual hydrogeology – north-west to south-east – not to scale	10
Figure 3.1	WMP groundwater monitoring network	12
Figure 4.1	Bowmans Creek alluvium trigger bore hydrographs	16
Figure 4.2	Glennies Creek alluvium trigger bore hydrographs (1)	16
Figure 4.3	Glennies Creek alluvium trigger bore hydrographs (2)	17
Figure 4.4	Hunter River alluvium trigger bore hydrographs	17
Figure 4.5	Surface water level hydrographs	18
Figure 4.6	Other Bowmans Creek alluvium monitoring bore hydrographs	19
Figure 4.7	Other Hunter River alluvium monitoring bore hydrographs	19
Figure 4.8	Bowmans Creek alluvium trigger bore pH trends (1)	21
Figure 4.9	Bowmans Creek alluvium trigger bore pH trends (2)	21
Figure 4.10	Glennies Creek alluvium trigger bore pH trends (1)	22
Figure 4.11	Glennies Creek alluvium trigger bore pH trends (2)	22
Figure 4.12	Hunter River alluvium trigger bore pH trends	23
Figure 4.13	Other Bowmans Creek alluvium bore pH trends	23
Figure 4.14	Other Hunter River alluvium bore pH trends	24
Figure 4.15	Bowmans Creek alluvium trigger bore EC trends (1)	24
Figure 4.16	Bowmans Creek alluvium trigger bore EC trends (2)	25
Figure 4.17	Glennies Creek alluvium trigger bore EC trends (1)	25
Figure 4.18	Glennies Creek alluvium trigger bore EC trends (2)	26
Figure 4.19	Hunter River alluvium trigger bore EC trends	26
Figure 4.20	Other Bowmans Creek alluvium bore EC trends	27
Figure 4.21	Other Hunter River alluvium bore EC trends	27
Figure 4.22	Surface water EC trends	28
Figure 4.23	Coal measure bore hydrographs	29
Figure 4.24	Coal measure overburden bore hydrographs	30
Figure 4.25	Hydrographs for monitoring bores in vicinity of LW203	30
Figure 4.26	Hydrographs for monitoring bores in vicinity of LW204	31
Figure 4.27	Hydrographs for VWP WMLP269 in vicinity of LW203/LW204	31
Figure 4.28	Coal measure bore pH trends	32

Table of contents (continued)

		Page No.	
Figure 4.29	Coal measure overburden bore pH trends	33	
Figure 4.30	Coal measure bore EC trends		
Figure 4.31	Coal measure overburden bore EC trends	34	
	List of tables		
Table 2.1	Average Monthly Rainfall 2020 – Ashton Coal and Bulga	3	
Table 2.2	Longwall panel schedule	5	
Table 3.1	Groundwater elevation trigger levels for alluvial monitoring bores	13	
Table 3.2	Groundwater quality trigger levels for alluvial monitoring bores	14	
Table 5.1	EPL 11879 monitoring bore groundwater levels (2020)		
Table 5.2			
Table 6.1	Breakdown of abstracted water volumes (2020)	38	
	List of appendices		
Appendix A	Summary of WMP monitoring locations		
Appendix B	Summary of GWMP Plan – parameters and frequency		
Appendix C	Extract GWMP protocol for exceedance of groundwater trigger values (Yancoal,	2018)	
Appendix D	Annual groundwater quality laboratory results 2020		
Appendix E	Groundwater chemistry – aquifer speciation		
Appendix F	Laboratory certificate of analysis and chain of custody documents (August 2020)	
Appendix G	WMLP EC trigger exceedance investigation		

Report on

Yancoal - Ashton Coal Annual Groundwater Monitoring Review 2020

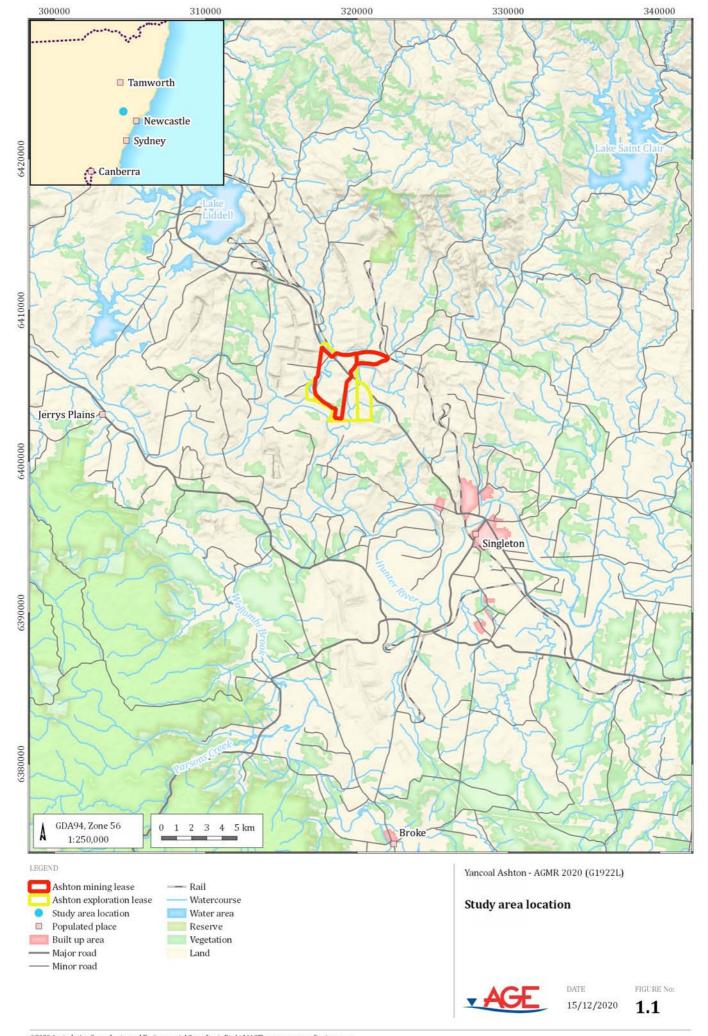
1 Introduction

The Ashton Coal Project (ACP) is located 14 km north-west of Singleton in the Hunter Valley region of New South Wales (NSW) (Figure 1.1). The ACP consists of decommissioned open cut and active underground mining to access a series of coal seams within the Permian Foybrook Formation. Ashton Coal Operations Ltd (ACOL) is wholly owned and operated by Yancoal Australia Limited (Yancoal).

Between 2003 and 2011, coal was recovered from eleven seams of varying thickness, down to and including the Lower Barrett Seam (LB), from an open cut mine known as the North-East Open Cut (NEOC). Between 2007 and 2016, underground longwall (LW) mining extracted coal from the Pike's Gully Seam (PG), the Upper Liddell (ULD) and the Upper Lower Liddell Seams (ULLD). Mining in longwall panel LW203 within the ULLD extracted coal between October 2019 and May 2020. Works on longwall panel LW204 within the ULLD began in July 2020.

The underground mine is located south of the New England Highway and includes a diversion of Bowmans Creek via two excavated and lined channels. The channels have re-routed Bowmans Creek to areas located above abandoned longwall panels.

1.1 Objective


The ACOL development consent (DA 309-11-2001-i – 11 February 2002; last modified June 2016), requires that groundwater be monitored for potential impacts from mining. In 2020, the Department of Planning and Environment (DPE) approved the current water management plan (WMP; Ashton document HSEC Management System Plan Doc. No. 3.4.1.8 version 11, dated 15 September 2020). The WMP outlines the groundwater monitoring program and establishes trigger values for groundwater levels and quality in the various groundwater systems located within the ACP site.

This report summarises the monthly data collected by Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) from January 2020 to December 2020. The aim of this report is to provide a consolidated summary of groundwater conditions at ACP throughout 2020.

1.2 Scope

The scope undertaken to achieve the objectives includes:

- review and assess rainfall, groundwater levels, pH, electrical conductivity (EC) and water chemistry data from groundwater monitoring campaigns;
- comparison of groundwater monitoring results against WMP triggers;
- notify ACOL of exceedances which require the enactment of the WMP groundwater response plan; and
- make recommendations regarding the groundwater monitoring network and program, where necessary, to ensure ongoing quality control/assurance of groundwater monitoring.

2 Physical setting

The Ashton underground mine is located south of the New England Highway, bounded by the Hunter River to the south and two Hunter River tributaries – Glennies Creek and Bowmans Creek to the east and west, respectively (Figure 1.1). Underground operations intend extracting four coal seams; PG, ULD, ULLD and LB, via a longwall arrangement.

The underground workings (LW1 to LW8) extracted coal from the PG seam and underlying ULD seam (LW101 to LW108). Noteworthy, LW notation increases from east westward 1 to 8. Currently, longwall mining is taking place within LW204 of the ULLD seam (LW201 to LW208). LW204 is situated centrally within the mining lease (ML), with the Hunter River and the Hunter River alluvium to the south. The final LW panels within ULLD seams are located down dip of LW204, in the western portion of the ML.

2.1 Climate and rainfall

Climate monitoring data was collected by Ashton Weather Station and the Bureau of Meteorology (BOM) station at Bulga (South Wambo) (BOM station 061191), located about 19 km south-west of Ashton. The Ashton Weather station has 14 years of rainfall data for the period 1 July 2005 to present, while the Bulga (South Wambo) station has 61 years of rainfall data dating from 1959 to present. A summary of average monthly rainfall from the Bulga (South Wambo) station and the Ashton Weather station for 2020 is presented in Table 2.1. Rainfall at Ashton increased significantly in 2020 compared to the previous year with above average rainfall between February to April, July to October and December. The data presented in Table 2.1 shows that rainfall at Ashton in 2020 was below average for three months (May, June and November), and rainfall at the Bulga (South Wambo) station was below average for five months of 2020 (January, April, May, June and November).

Table 2.1 Average Monthly Rainfall 2020 - Ashton Coal and Bulga

Month	Ashton average monthly rainfall (mm)	% of long-term average	Bulga (South Wambo) average monthly rainfall (mm)	% of long-term average
Jan	62.0	100%	65.4	76%
Feb	169.0	213%	197.6	230%
Mar	108.2	123%	130.6	193%
Apr	71.2	123%	43.0	94%
May	30.0	91%	16.6	42%
Jun	43.8	63%	30.6	70%
Jul	121.4	410%	66.2	216%
Aug	39.2	125%	42.4	124%
Sep	53.6	130%	45.8	119%
Oct	126.2	265%	96.6	176%
Nov	29.6	41%	43.4	71%
Dec	144.2	223%	192	261%

An evapotranspiration (ET) rate of 765 mm/year was sourced from the Bureau of Meteorology (BOM)¹ database for the Camberwell area.

Long-term rainfall trends can be characterised using the Cumulative Rainfall Departure (CRD) method (Bredenkamp et al., 1995). CRD shows trends in rainfall relative to the long-term monthly average and provides a historical record of wetter and drier periods. A rising gradient in the CRD plot indicates periods of above average rainfall, while a declining slope indicates periods of below average rainfall. CRD has been used in this study to provide context to variations in groundwater levels and chemistry.

The CRD for Ashton weather station and Bulga (South Wambo) (BOM station 061191) are shown on Figure 2.1. CRD trends for both stations show above average rainfall for 2020, as represented by an increasing CRD.

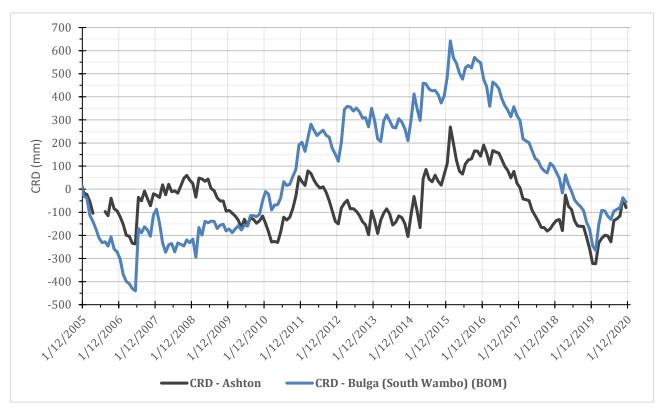


Figure 2.1 Cumulative Rainfall Departure - Ashton Coal and Bulga

¹ Bureau of Meteorology (2016). Average annual & monthly evapotranspiration. Available at: http://www.bom.gov.au/jsp/ncc/climate-averages/evapotranspiration/index.jsp

2.2 Surface water

The Ashton mine lease is bounded by Bowmans Creek to the west, Bettys Creek (tributary of Bowmans Creek) to the north, Glennies Creek to the east side and Hunter River to the south. Both Bowmans and Glennies Creeks are an affluent of the Hunter River. The three main water courses are described below:

- Hunter River is the main surface water body with a catchment area at Bowmans Creek of 13,590 km². The flow is regulated by Glenbawn Dam and by other licensed extractions and releases.
- Glennies Creek and its associated alluvium are located to the east of the underground workings and the PG sub-crop area. The catchment area is approximately 600 km². Up to half of the Glennies Creek catchment feeds into Lake St. Clair, located within the far north-eastern section of the catchment. Water from Lake St. Clair discharges into Glennies Creek under controlled release.
- Bowmans Creek natural channel is above the longwall panel LW6B/LW106B and its associated alluvium is over LW5 to LW8. It is the main water course over the underground workings area. Bowmans creek was diverted in two locations to minimise the impact of mining on both the creek and the potential inflows to the underground workings. The construction of the eastern diversion commenced in March 2011 and the western diversion commenced in February 2012. Both diversions were commissioned in November 2012 and are located within the Bowmans Creek Alluvium (BCA). The diversions were designed to replicate the natural creek setting in terms of channel cross-sectional variability in bed level and ecological features (i.e. resting pools). The diversions were lined with a geosynthetic clay liner to minimise leakage from the creek.
- Bowmans Creek flow is not regulated and is monitored according to the WMP. The streamflow gauging station (no. 210130 regulated by WaterNSW), was installed in October 1993 and is used as a flow baseline for Bowmans creek with a catchment area of 240 km². This station is in the middle section of the creek on the ML, upstream to the western diversion.

2.3 Mining

The longwall panels accessing the ULLD (including active LW204) are generally offset 24 m to the east and 10 m south from the overlying ULD longwall panels. This offset is designed to reduce the resulting subsidence and associated impacts to the surrounding environment. That said, the northern extent of PG, ULD, ULLD longwalls, and the main gate road are aligned resulting in a "stacked edge" where subsidence impacts are slightly more noticeable at the surface than elsewhere.

The start and end dates of longwall panel mining at ACP are summarised in Table 2.2.

Longwall panel Target seam **Start date End date** LW1 PG 12/03/2007 15/10/2007 LW2 PG 10/11/2007 21/07/2008 LW3 PG 20/08/2008 03/03/2009 LW4 PG 02/04/2009 15/10/2009 LW5 PG 04/01/2010 07/06/2010 LW6A PG 09/07/2010 22/11/2010

Table 2.2 Longwall panel schedule

Longwall panel	Target seam	Start date	End date
LW7A	PG	22/03/2011	08/08/2011
LW7B	PG	03/10/2011	17/01/2012
LW8	PG	27/02/2012	05/06/2012
LW101	ULD	31/07/2012	16/06/2013
LW6B	PG	14/07/2013	10/10/2013
LW102	ULD	10/11/2013	24/07/2014
LW103	ULD	21/08/2014	21/06/2015
LW104A	ULD	23/07/2015	16/01/2016
LW104B	ULD	03/02/2016	11/04/2016
LW105	ULD	17/05/2016	26/09/2016
LW106A	ULD	18/10/2016	31/05/2017
LW201	ULLD	07/07/2017	04/05/2018
LW202	ULLD	07/06/2018	20/08/2019
LW203	ULLD	08/10/2019	25/05/2020
LW204	ULLD	02/07/2020	Present

2.4 Conceptual hydrogeology

2.4.1 Hydrostratigraphy

Ashton is located in the central Hunter Valley of NSW where the lower sequences of the Wittingham Coal Measures (Singleton Supergroup) subcrop (Figure 2.2). Within the Ashton mining lease, the Hebden seam to the Bayswater seam (inclusive) subcrop. The underground operation targets the PG, ULD, ULLD and the LB seams.

The Wittingham Coal Measures dip west south-west in the Ashton area, an orientation locally controlled by the Camberwell Anticline to the east of the mine and the Bayswater Syncline to the west. The top target coal seam at Ashton, the PG seam, subcrops under the Glennies Creek Alluvium (GCA) approximately 150 m east of the mine, while the lowest target coal seam, the LB seam, subcrops under regolith approximately 2 km to the east of the mine. In the western portion of the mining area, the overburden above the PG seam ranges in thickness between 100 m (north end of LW7) and 190 m (south end of LW7).

The stratigraphic sequence in the region comprises two distinct units: Quaternary alluvium and Permian strata. The Permian strata comprise coal seams (typically 2 m to 2.5 m thick) with overburden and interburden (typically 30 m thick between successive seams) consisting of sandstone, siltstone, tuffaceous mudstone, and conglomerate. The Quaternary alluvium consists of unconsolidated silt, sand and gravel in the alluvial floodplains of the Hunter River (HR), Bowmans Creek (BC) and Glennies Creek (GC). The alluvium unconformably overlies the Permian within the floodplains of the HR, BC and GC. Elsewhere, the Permian is overlain by a regolith comprising colluvium, eluvium and completely weathered rock, which interfaces with the floodplain alluvium at the flanks of the valleys.

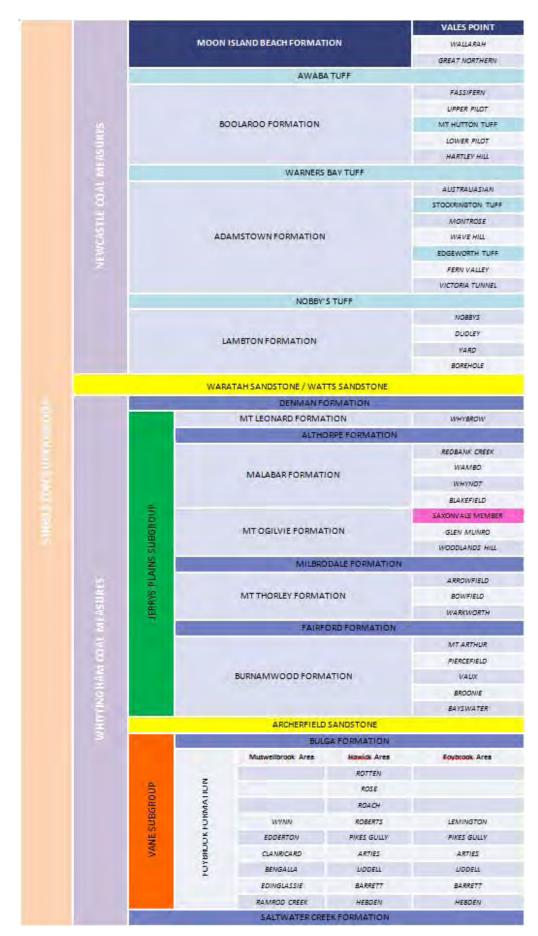


Figure 2.2 Singleton Super Group sequence stratigraphy (AGE, 2016)

2.4.1.1 Quaternary alluvium/Regolith

Ashton is overlain by Quaternary alluvium associated with the HR, BC and GC. The Bowmans Creek Alluvium (BCA) and Glennies Creek Alluvium (GCA) are in direct connection to the Hunter River alluvium (HRA). The Quaternary/recent aged alluvium/colluvium along the HR, GC and BC flood plains comprises two distinct depositional units; a surficial fine-grained sediment and a coarser basal material. The surficial alluvium comprises shallow sequences of clay, silty sand and sands. Along the minor drainage lines, the surficial alluvium is typically constrained within 500 m of the creeks and is between 7 m to 15 m thick.

Away from the floodplain areas, the Permian coal measures sequence is overlain by a layer of regolith, comprising colluvium/eluvium, and completely weathered rock that collectively have soil rather than rock properties and interface with the alluvium at the flanks of the floodplain areas. The regolith layer varies in thickness, though is typically 15 m to 20 m thick above rock.

2.4.1.2 Permian strata

The Wittingham Coal Measures comprise Permian aged coal seams interbedded with siltstone, sandstone, shales and conglomerates. The Wittingham Coal Measures are up to 400 m thick at Ashton, but regionally they range from approximately 250 m to 600 m thickness. At Ashton, the lower portion of the Wittingham Coal Measures is present on site. The profile extends from above the Bayswater seam to the Hebden seam (Figure 2.2).

Locally, the Wittingham Coal Measures are further divided into (AGE, 2016):

- four main target coal seams PG, ULD, ULLD and the LB;
- a large number of coal seams and plies of varying thickness, including the Bayswater seam, up to 20 Lemington seam plies, the Arties seam, and a number of Liddell seam and Barrett seam plies that are not proposed to be mined in the Ashton underground mine; and
- interburden sediments comprising siltstone, sandstone, conglomerate and claystone.

Over 20 plies of the Lemington seam profile and the overlying Bayswater seam are present within the PG seam overburden. The largest Lemington seam plies are of similar thickness as the four target seams and may have similar hydraulic properties.

2.4.2 Recharge

Recharge is interpreted to occur from direct rainfall to the ground surface, infiltrating into the formations through the thin soil cover and regolith. The coal measures also occur at subcrop in localised zones beneath the HRA, GCA, and the BCA. In these areas, the Permian coal measures are interpreted to be recharged by downward seepage and then downdip flow along the most permeable strata in the sequence, primarily the coal seams (Aquaterra, 2009 and AGE, 2016).

The combined surface water catchment area potentially providing recharge to the Ashton area is significantly greater in size than the mine area itself. Ashton is located immediately adjacent the confluences of the Hunter River with Bowmans and Glennies Creeks. The Ashton surface and underground infrastructure is located entirely within the Bowmans and Glennies Creek catchments, which extend approximately 30 km and 45 km to the north of Ashton, respectively.

Bowmans and Glennies Creek have up to fourth order tributaries up-stream of the site and rainfall falling within the respective catchments flows through the Ashton area. The Bowmans and Glennies Creeks catchments span approximately 300 km² and 600 km², respectively.

2.4.3 Groundwater flow

The Quaternary alluvium and regolith combined is interpreted (AGE, 2016) to be an unconfined groundwater system that is recharged by rainfall infiltration, streamflow and upward leakage from the underlying stratigraphy, particularly along GC and BC.

The water table in the alluvium/regolith is a subdued reflection of topography. Groundwater within the HRA flows generally in an easterly direction, while groundwater within GCA and the BCA flows generally in a southerly direction towards the HR, with local flow towards the respective river/creeks.

The direction of groundwater flow for the coal seams is influenced by the local geomorphology and structural geology as well as the long history of mining within the region. Groundwater flow within the Permian coal measures is understood to be to the south-west consistent with the dip direction of the coal seams.

The mining of the PG seam and ULD seam has impacted the groundwater regime at Ashton. Mining has induced subsidence cracking that extends to the ground surface above parts of Ashton, and to a lesser height above the goaf in other areas where the cover depth above the PG seam is greater (i.e. near the western side of the mine area). It is likely that in areas of shallower cover depth, this cracking has penetrated both the overburden of the PG, along with the BCA. Surface cracking is also visible along and across the longwall panel areas immediately following subsidence. This surface cracking is expected to extend for only a limited depth below surface and may or may not intersect with the subsidence cracking emanating up from the goaf, depending on cover depth and subsidence magnitude.

There is also potential for recharge from the GCA through connectivity with the PG seam (AGE, 2016), which hydraulic testing showed was significantly more permeable close to outcrop than at depth (Peter Dundon and Associates, 2006). Inflows into the workings during mining of LW1 were not significantly greater than during mining of LW1 tailgate (TG1A). This would indicate that mining of LW1 did not increase the connectivity or flow from the PG seam in subcrop beneath the GCA. Although inflows were higher during mining of TG1A than subsequent inflows from subsided strata during extraction of LW1, the total inflows to the end of LW1 were below predicted inflows, and the observed impacts on GCA were less than predicted, confirming that the proximity to Glennies Creek has not resulted in an unexpected level of connectivity and inflows from the Glennies Creek floodplain.

The presence of subsidence cracking over parts of the underground mine increases the potential connectivity of the mine with the water within the creeks and associated alluvium. Planned LW panels within the underlying ULLD and LB seams may allow for reactivation of subsidence and subsidence related fracturing within these areas (AGE, 2016).

The conceptual hydrogeology is depicted in Figure 2.3.

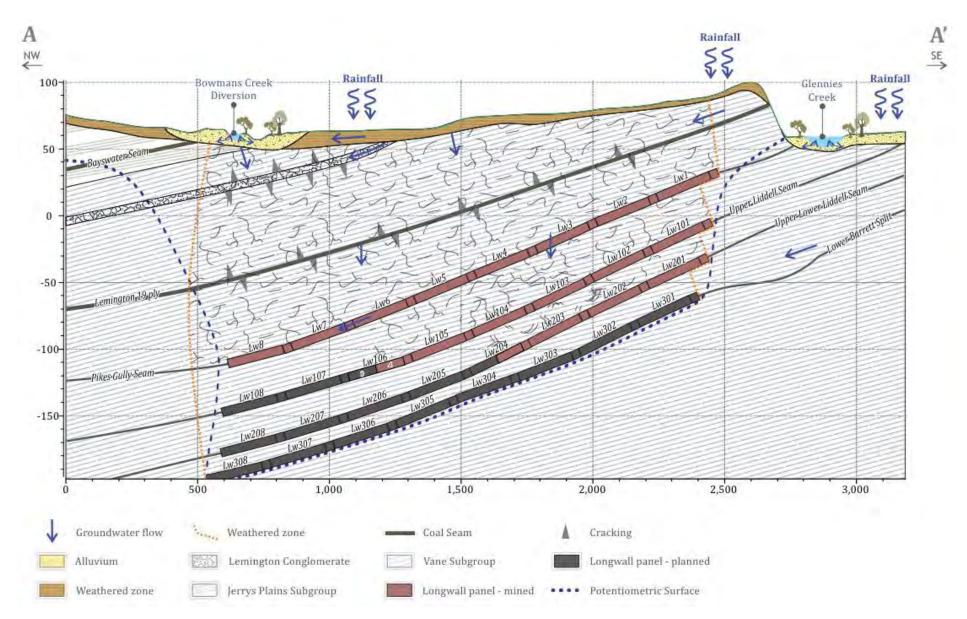


Figure 2.3 Conceptual hydrogeology – north-west to south-east – not to scale

3 Groundwater management plan

The previous WMP (2018) was updated and submitted to DPI Water for approval in March 2018. The updated WMP (2020) (herein referred to as WMP) includes an update to targeted water quality triggers. Details of the monitoring locations are summarised in Appendix D. The groundwater monitoring plan, including monitoring parameters and frequency, is summarised in Appendix B. The WMP received approval in September 2020, therefore, groundwater monitoring was conducted as per WMP version 11 (2020) following its approval.

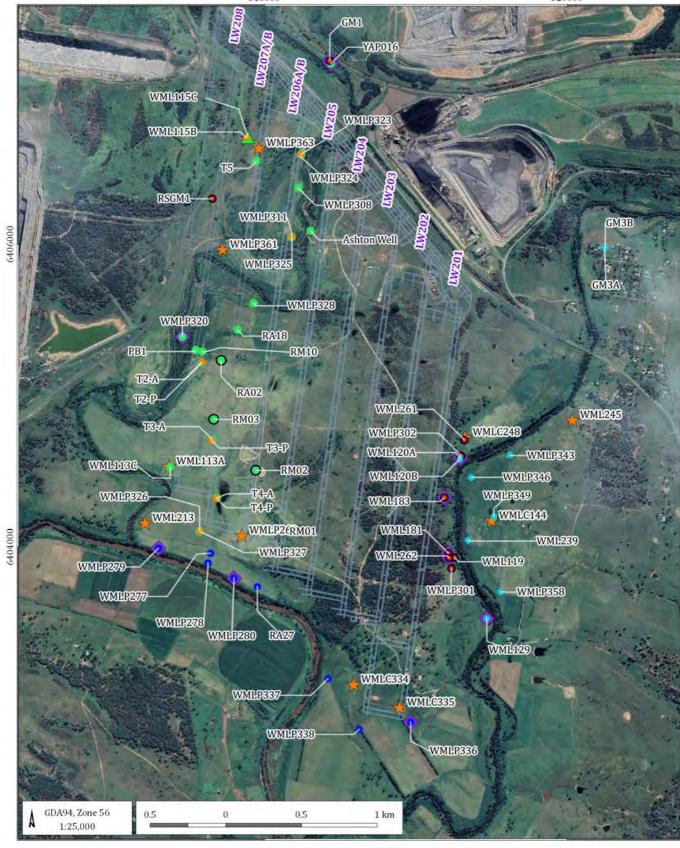
3.1 Groundwater monitoring network

The ACOL groundwater monitoring network consists of more than 100 monitoring bores. Of these, 64 bores and ten vibrating wire piezometer (VWP) installations are monitored as part of the WMP throughout monthly, quarterly, and annual campaigns (Appendix A). The WMP outlines the monitoring plan and key monitoring locations in areas potentially sensitive to mining impacts.

Monitoring of groundwater levels, VWP pressure heads, and water quality parameters at these bores sufficiently captures the lateral groundwater system behaviour of the alluvial aquifers, the interburden and the coal seam aquifers at the site. The current groundwater monitoring network is considered suitable to detect changes to groundwater across the site.

The WMP monitoring locations and respective monitoring targets are presented in Figure 3.1. Details of these monitoring locations are summarised in Appendix A (Table A1).

The groundwater monitoring program includes the monitoring of:


- groundwater levels;
- groundwater (piezometric) pressures;
- field water quality parameters pH, EC, temperature and total dissolved solids (TDS);
- groundwater sampling for minor chemical lab analysis (including pH, EC, TDS, major ions (calcium, magnesium, sodium, potassium, chloride and sulfate as SO4) and alkalinity);
- groundwater sampling for comprehensive chemical lab analysis (including pH, EC, TDS, major ions, alkalinity, cations/anions, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, selenium, zinc, turbidity, cyanide, nitrate, nitrite, Kjeldahl nitrogen, total nitrogen and total phosphorous); and
- monitoring of groundwater levels and EC as required by Environmental Protection Licence (EPL) 11879.

Monitoring frequency is as follows (Appendix B):

- monthly monitoring at selected alluvial piezometers for water level and field water quality;
- monthly monitoring of water level and piezometric pressure in longwall-specific piezometers during active extraction at relevant longwalls;
- quarterly monitoring at selected piezometers for water level, field water quality and minor chemical analysis;
- biannual monitoring for bores specified by EPL 11879; and
- annual sampling at selected piezometers for minor and comprehensive chemical analysis.

The groundwater monitoring plan, including monitoring parameters and frequencies, is summarised in Appendix B (Table B1).

318000 320000

LEGEND

Longwall panels (ULLD)

Bowmans Creek Alluvium
Bowmans Creek Alluvium and

Coal Measure Overburden

Bowmans Creek Colluvium

Coal measure

Coal measure overburden

EPL Bores - Updated Nov 2019

Glennies Creek Alluvium

Hunter River Alluvium

★ VWPs

Yancoal Ashton - Monthly Reporting (G1922L)

WMP groundwater monitoring network

DATE 21/12/2020 FIGURE Not

3.2 Trigger values

The WMP outlines trigger values for groundwater level and quality for monitoring bores in the Bowmans Creek Alluvium (BCA), Glennies Creek Alluvium (GCA) and the Hunter River Alluvium (HRA).

A recorded water level below the defined trigger level at a monitoring bore at any time between March 2018 and the end of mining of LW204 in the ULLD, sustained for three consecutive months, would trigger a response under the WMP. Groundwater elevation trigger levels are summarised in Table 3.1. Groundwater quality trigger levels are summarised in Table 3.2. As for groundwater elevation, three consecutive measurements outside of these values trigger a response under the WMP. In addition, if a recorded value at a monitoring bore differs extremely from the preceding three readings at that location and there are no unusual events that could have caused the difference, a response would be triggered. The WMP groundwater response plan, for cases where trigger values are exceeded, is summarised in Appendix C.

Table 3.1 Groundwater elevation trigger levels for alluvial monitoring bores

Aquifer	Monitoring bore	Base of alluvium elevation (mAHD)	Assigned trigger value end of mining in LW204 (Upper Lower Liddell Seam) (mAHD)
	WMLP311	55.64	57.50
BCA*	WMLP323	59.47	59.20
DCA.	WMLP328	49.42	55.15
	T2A	49.69	54.17
	WML120B	51.12	51.45
	WML129	45.44	49.80
	WML239	50.82	49.78
GCA	WMLP343	50	51.33
	WMLP346	49.18	51.35
	WMLP349	48.84	50.82
	WMLP358	50.16	50.79\$
	WMLP279	45.1	48.82
HRA	WMLP280	44.92	48.63
IIKA	WMLP337	48.05	47.73
	WMLP336	47.87	48.15

<u>Notes:</u>

^{*} Bowmans Creek alluvium is approved to be dewatered in areas above the mine plan by end of mining of the Upper Liddell seam (Aquaterra, 2009). Trigger values are therefore intended as a guide representing updated, more conservative, impact predictions from the updated groundwater model (AGE, 2016).

^{\$} This water level trigger is based on the second lowest water level measured, as the lowest measured water level is an outlier in the dataset.

Table 3.2 Groundwater quality trigger levels for alluvial monitoring bores

Aquifer	Monitoring bore	Groundwater pH trigger - Lower (5 th percentile)	Groundwater pH trigger - Upper (95 th percentile)	Groundwater EC trigger (µS/cm) (95 th percentile)
	WMLC113C	6.6	7.4	1445
	WMLP311	6.5	8.0	1289
BCA	WMLP323	6.5	8.1	1241
DUA	WMLP326	6.6	7.5	2078
	WMLP328	6.6	8.2	1175
	T2A	6.7	7.7	1422
	WML120B	6.4	7.7	1387
	WML129	6.7	8.0	740
	WML239	6.3	7.4	984
GCA	WMLP343	6.7	7.2	994
	WMLP346	6.5	7.1	750
	WMLP349	6.5	6.8	983
	WMLP358	6.2	6.9	401
	WMLP279	6.3	7.5	1276
IID A	WMLP280	6.6	7.9	2034
HRA	WMLP337	6.8	7.8	3254
	WMLP336	6.2	8.2	1708

Notes: Data reviewed for trigger derivation includes historical data to June 2017.

3.3 Sampling methods

Groundwater sampling at Ashton in 2020 adhered to the following standards and procedures:

- Australian Government National Water Commission (2020). "Minimum Construction Requirements for Water Bores in Australia". Fourth edition ISBN 978-0-646-81881-8.
- Standards Australia (1998). "Water Quality Sampling. Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples". Australian/New Zealand Standard 5667.1:1998.
- Sundaram, B. (2009). "Groundwater Sampling and Analysis A Field Guide", Australian Government Geoscience Australia. GeoCat 60901.

Groundwater levels/pressure heads at Ashton in 2020 were measured as follows:

- manual measurements using a water level dipper;
- download of VWP data;
- downloadable pressure transducer (PT); and
- telemetric PT.

Groundwater quality field parameters were measured using a calibrated water quality meter. Water quality laboratory analysis is conducted by National Association of Testing Authorities (NATA) accredited group Australian Laboratory Services (ALS).

Throughout 2020, groundwater sampling was conducted by AGE Hydrogeologists, Walter Rowlands, Glen Brumm and Jordan Reeds.

4 Groundwater monitoring results

Groundwater monitoring and sampling was conducted at the locations and frequencies outlined in the WMP (Section 7.3). Groundwater levels and quality trends for alluvial bores are presented in Figure 4.1 through Figure 4.22. Groundwater levels and quality data for non-alluvial monitoring locations are presented in Figure 4.23 through Figure 4.29.

4.1 Alluvium monitoring

4.1.1 WMP compliance groundwater levels

The groundwater level trends and trigger levels for the BCA, GCA and HRA compliance monitoring bores are presented in Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4, respectively. Daily rainfall measurements and CRD have also been plotted and used to compare water level trends. The river and creek water levels (sourced from WaterNSW online database²) are presented graphically in Figure 4.5.

The following observations can be noted for 2020:

- BCA regulatory bore water levels increased throughout 2020 (Figure 4.1). Over the course of the year, three of the previously dry BCA trigger bores returned water level readings; T2A during August, WMLP328 and WMLP311 during April. All BCA trigger bores were recorded above respective trigger values from April, except for T2A which recorded readings above trigger value from August. Other previously dry BCA bores returned water level readings in 2020 (PB1, RA18 and T5). Groundwater level increase within these bores corresponds to an increasing CRD throughout 2020. Unlike the GCA and HRA, the BCA is not a regulated stream. It should be noted that ACP is approved to intercept the BCA groundwater resource under DA 309-11-2011-i MOD 5.
- GCA groundwater levels were generally stable throughout the year (Figure 4.2 and Figure 4.3). A minor decline in groundwater level was recorded between February to June 2020 in monitoring bore WML120B. All GCA groundwater levels remained above established triggers in 2020.
- HRA regulatory bore water levels were relatively steady throughout the year, except for monitoring bore WMLP280 and WMLP279 which increased through 2020 (Figure 4.4). The stability of HRA water levels can be partly attributed to controlled releases upstream of the HR section that traverses ACP. All HRA groundwater levels remained above established triggers in 2020.
- Surface water elevation has continuously been recorded in Bowmans Creek since August following above average rainfall throughout 2020. Large spikes in surface water level in April, August and November can be attributed to heavy rainfall in the region (Figure 4.5). The Glennies Creek water level was relatively steady throughout the year, with sharp increases in water level recorded after heavy rainfall. Several sharp recorded declines in water level are suspected false readings. Hunter River elevation was variable throughout 2020, with large spikes in water level observed following high rainfall in February, April, August, and November. Hunter River water elevation remained stable throughout periods of low rainfall.

The site area has experienced a period of prolonged above average rainfall over 2020, as indicated by an increasing CRD. Groundwater levels, not associated with regulated water bodies, have increased primarily due to increased rainfall recharge. No mining impacts outside of predictions are noted in the alluvium.

-

² WaterNSW (2020). Real-time water data. Available at: http://realtimedata.water.nsw.gov.au/water

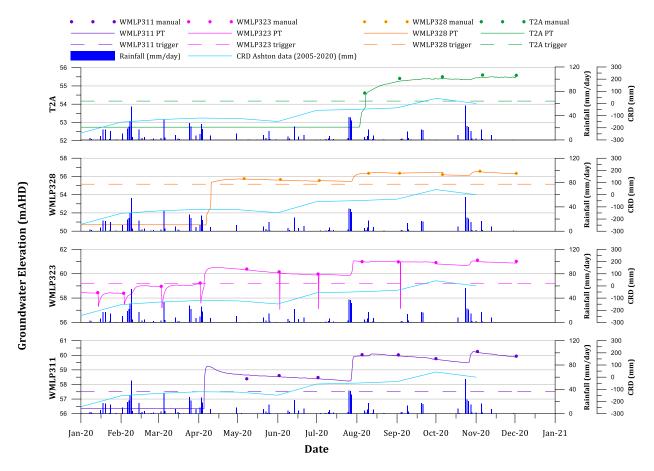


Figure 4.1 Bowmans Creek alluvium trigger bore hydrographs

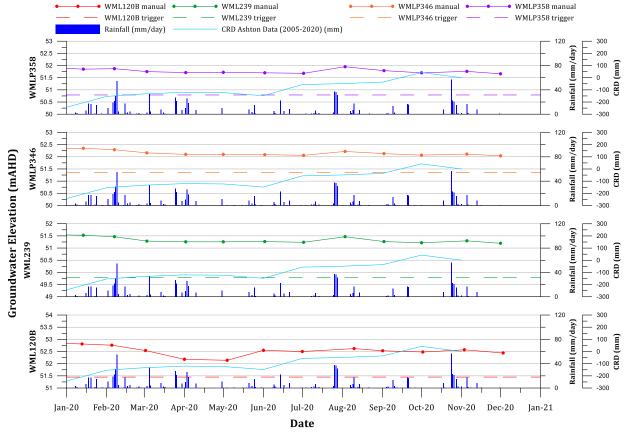


Figure 4.2 Glennies Creek alluvium trigger bore hydrographs (1)

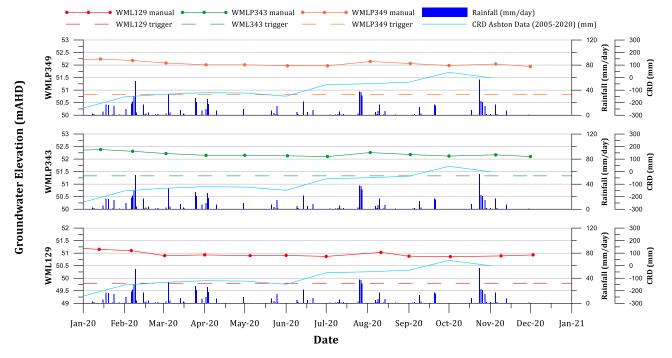


Figure 4.3 Glennies Creek alluvium trigger bore hydrographs (2)

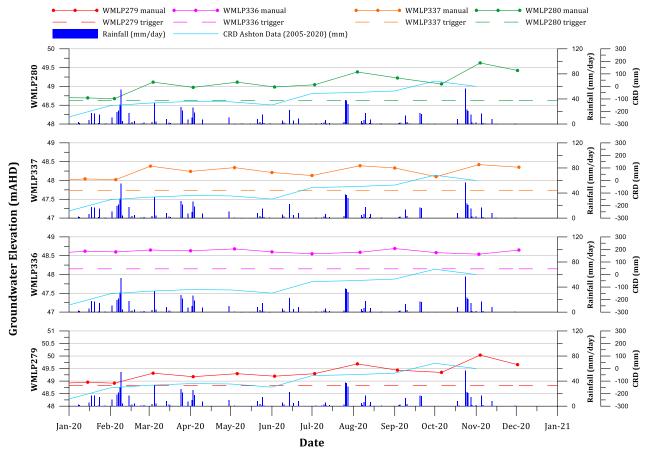


Figure 4.4 Hunter River alluvium trigger bore hydrographs

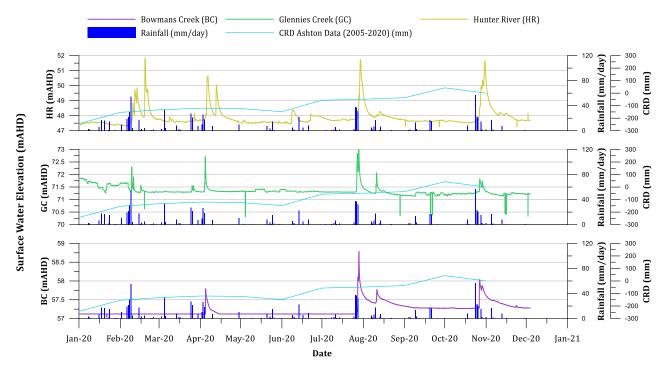


Figure 4.5 Surface water level hydrographs

4.1.2 Other alluvium groundwater levels

Groundwater level trends observed in 2020 for other BCA and HRA monitoring bores across the monitoring network are presented in Figure 4.6 and Figure 4.7, respectively. Daily rainfall measurements and CRD have been plotted and used to assess water level trends. As for the BCA regulatory bores, the other BCA alluvial bores recorded an overall increase in water levels. Previously dry monitoring bores T5 and RA18 recorded water levels in August and November, respectively. The other HRA bores responded to increased rainfall throughout 2020 with water levels increasing throughout the year. No mining impacts outside of predictions are noted.

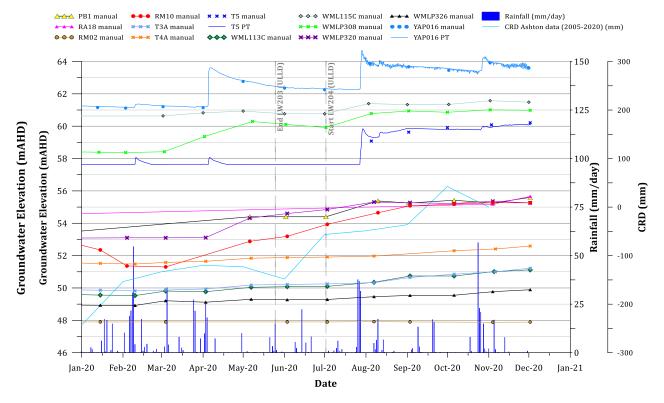


Figure 4.6 Other Bowmans Creek alluvium monitoring bore hydrographs

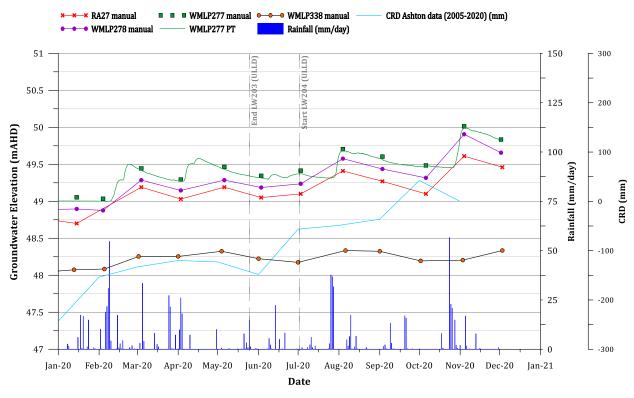


Figure 4.7 Other Hunter River alluvium monitoring bore hydrographs

4.1.3 pH, electrical conductivity and major ions

All alluvial bores across the ACP monitoring network were sampled for pH, EC and major ions throughout 2020, and the results are presented graphically in Figure 4.8 through to Figure 4.22. A complete table of results for the aforementioned parameters is presented in Table D1; together with comprehensive analysis measurements recorded during annual sampling in August 2020. All associated laboratory files can be found in Appendix F.

As has been the case in preceding years, groundwater pH in alluvial bores was slightly acidic to neutral in 2020. One bore recorded an exceedance of pH trigger value throughout the year (WMLP349), however the event was not consecutive and as such did not require a response under the WMP. Values for pH were stable in 2020, generally ranging from pH 6.5 to 7.5, with only a few outliers outside this range. Discrepancies in pH were minor and considered within natural variation. The specific pH ranges measured within the BCA, GCA and HRA in 2020 were:

- BCA pH 6.62 (WMLP323) to 7.62 (RM10);
- GCA pH 6.25 (WMLP358) to 7.10 (WMLP343); and
- HRA pH 6.52 (WMLP336) to 7.28 (WMLP337).

Groundwater EC was fresh to slightly brackish across the BCA, GCA and HRA monitoring network over 2020; mirroring the conditions in previous years. Two bores exceeded EC triggers over three consecutive periods during 2020 – monitoring bores WMLP323 and WMLP328. These bores are BCA bores and have been investigated (AGE, 2020). The investigation concluded that BCA EC levels have increased as a result of reduced rainfall since 2018. A prolonged dry period decreased water levels in all the bores to unprecedented levels. This allowed salts to accumulate in the unsaturated zone. These salts were then remobilised by a rising water table after significant rainfall in early 2020, causing the EC exceedances in groundwater at WMLP323 and WMLP328.

GCA and HRA EC levels in 2020 were steady overall, with the exception of HRA bores WMLP337 and WMLP279 which both recorded declining EC values over the year. BCA bores WML113C, WMLP328, WMLP323 and WMLP311 all recorded a significant decline in EC over the 2020 monitoring period. For alluvial bores, the observed EC ranges in 2020 were:

- BCA 732 (WMLP311) to 3,680 μ S/cm (PB1);
- GCA 323 (WMLP358) to 902 μS/cm (WMLP349); and
- HRA 509 (WMLP336) to 2,945 μS/cm (WMLP337).

River and creek EC levels (sourced from the WaterNSW online database) were also examined over 2020. Bowmans Creek remained dry at the gauge until August 2020, with EC increasing thereafter until decreasing suddenly following heavy rainfall in late October. Glennies Creek EC was stable throughout the year. Hunter River EC oscillated over the course of 2020, with fluctuations remaining within historic ranges.

The major ion content of each alluvial system was also assessed in 2020 as shown in the classification table and Piper diagram from August 2020 (Appendix E). The cation water type in all monitoring bores were Na or Ca dominant. With respect to anions, Cl dominates over HCO_3 and SO_4 ions in the alluvial monitoring bores. The BCA and HRA water types are similar and can be distinguished from the GCA water types due to the water source and the recharge/discharge mechanism associated with each body.

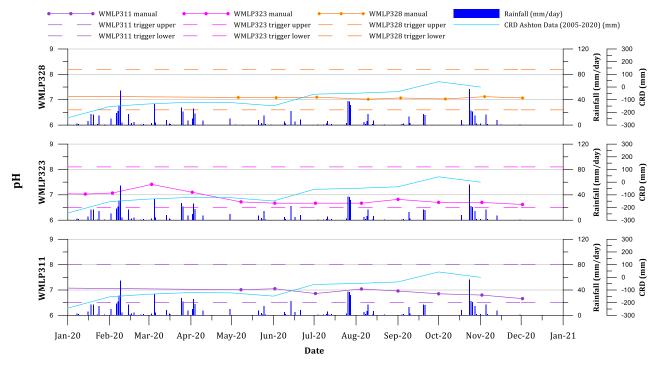


Figure 4.8 Bowmans Creek alluvium trigger bore pH trends (1)

Figure 4.9 Bowmans Creek alluvium trigger bore pH trends (2)

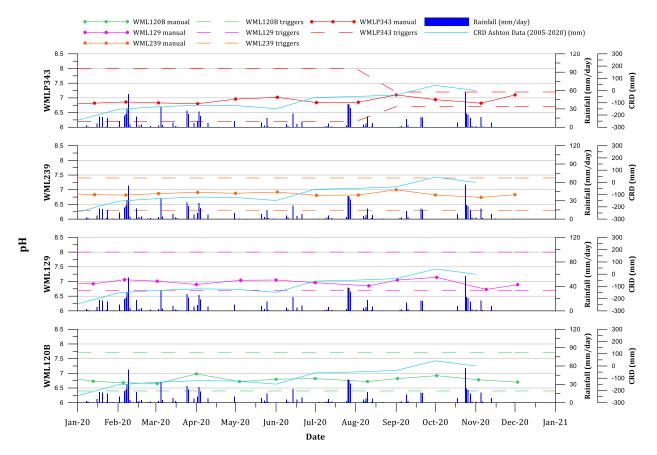


Figure 4.10 Glennies Creek alluvium trigger bore pH trends (1)

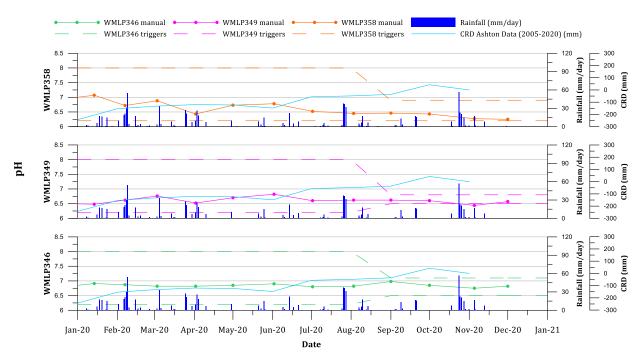


Figure 4.11 Glennies Creek alluvium trigger bore pH trends (2)

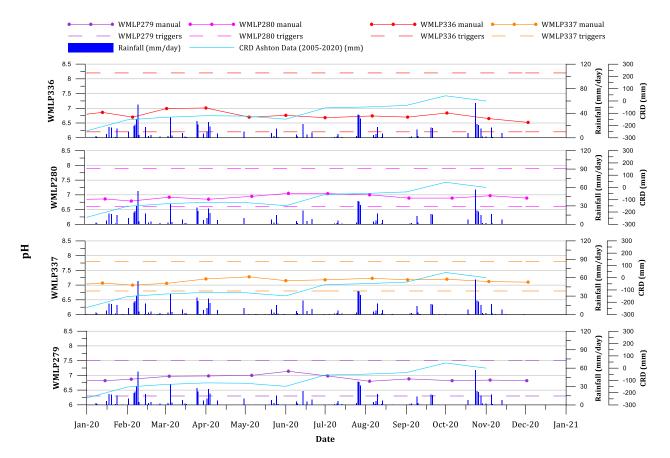


Figure 4.12 Hunter River alluvium trigger bore pH trends

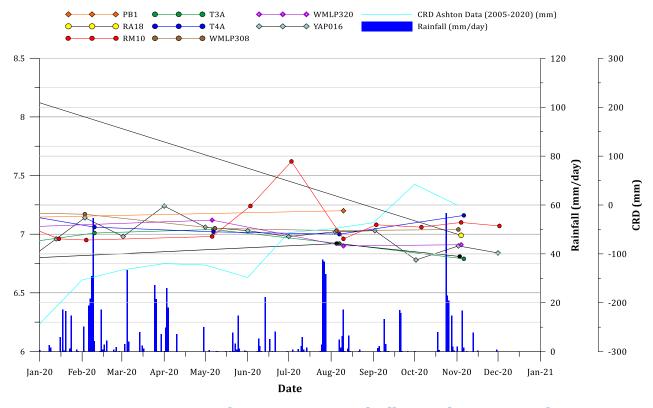


Figure 4.13 Other Bowmans Creek alluvium bore pH trends

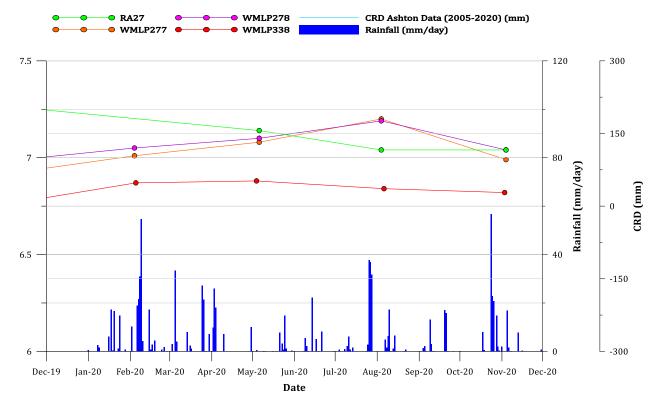


Figure 4.14 Other Hunter River alluvium bore pH trends

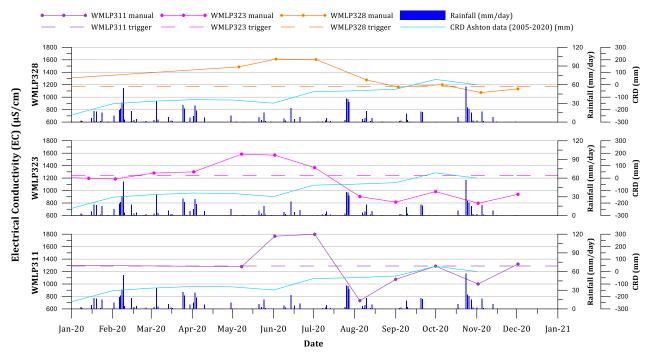


Figure 4.15 Bowmans Creek alluvium trigger bore EC trends (1)

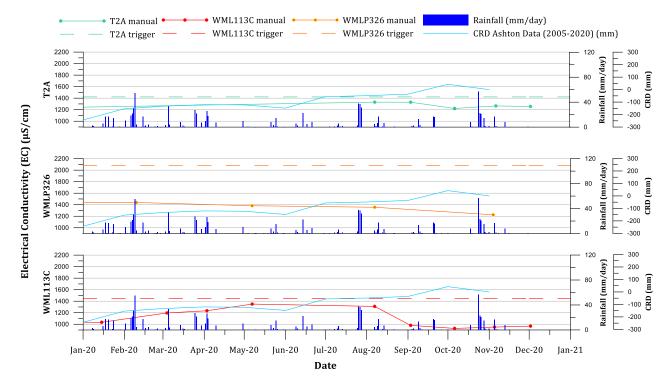


Figure 4.16 Bowmans Creek alluvium trigger bore EC trends (2)

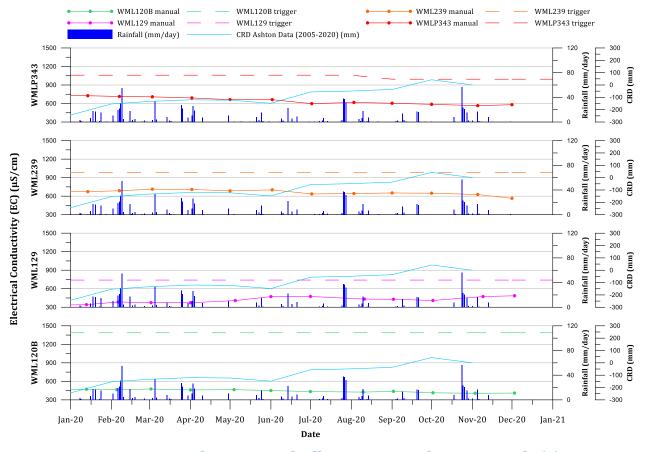


Figure 4.17 Glennies Creek alluvium trigger bore EC trends (1)

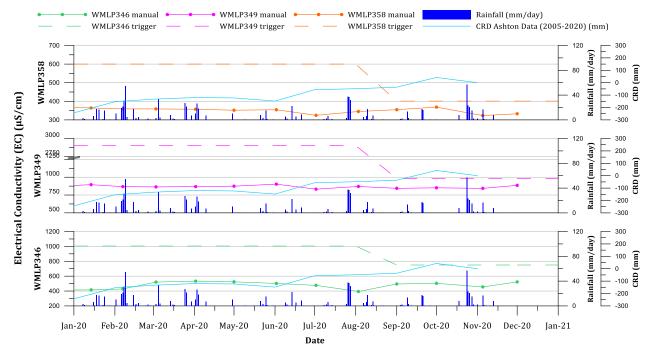


Figure 4.18 Glennies Creek alluvium trigger bore EC trends (2)

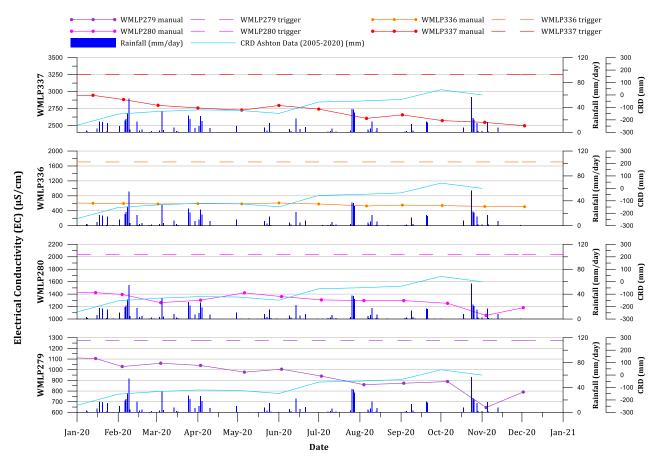


Figure 4.19 Hunter River alluvium trigger bore EC trends

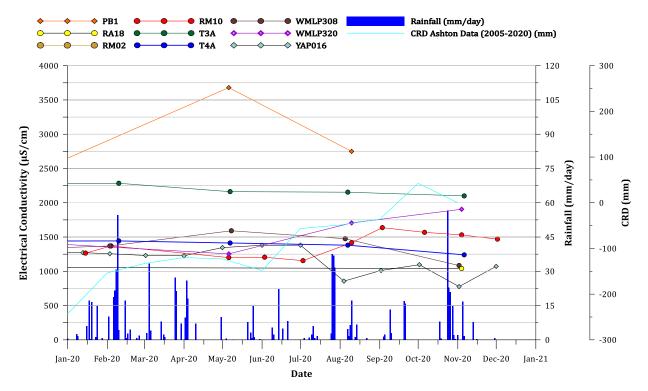


Figure 4.20 Other Bowmans Creek alluvium bore EC trends

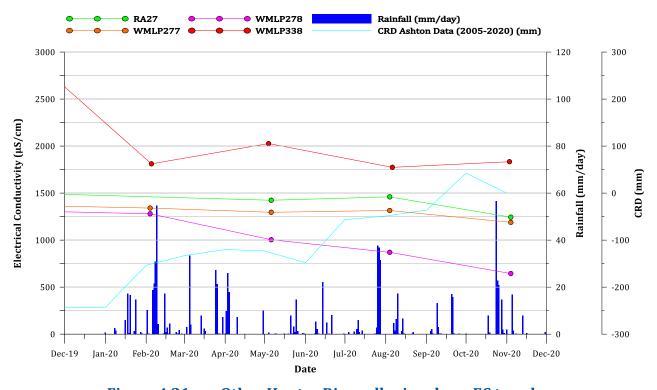


Figure 4.21 Other Hunter River alluvium bore EC trends

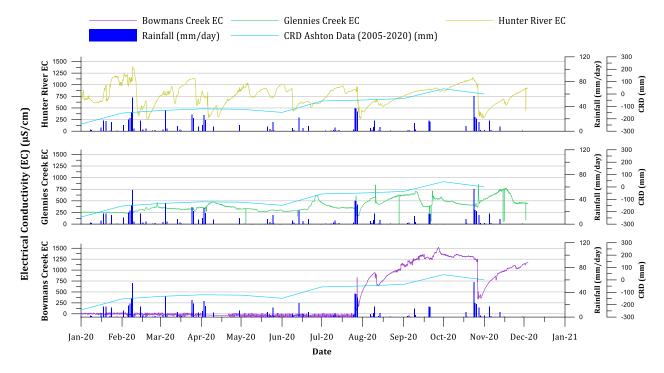


Figure 4.22 Surface water EC trends

4.1.4 Dissolved metals, select nutrients, turbidity and cyanide

Comprehensive lab analysis during August 2020 incorporated the measurement of select dissolved metals, select nutrients, turbidity and cyanide as tabulated in Appendix D. Dissolved metals concentrations were compared against ANZECC|ARMCANZ livestock limits (ANZECC & ARMCANZ, 2000), revealing no breaches for any of the metals assessed (arsenic, cadmium, chromium, copper, lead, nickel, selenium and zinc). Manganese and iron were detected at very low concentrations, though neither of these metals are regarded as specifically toxic at such concentrations; and no ANZECC|ARMCANZ livestock limit is established for these metals.

Select nutrients analysis included nitrite and nitrate as N, total Kjeldahl nitrogen as N, total nitrogen as N and total phosphorous as P. All N related concentrations were low, and no nitrate concentration was close to 400 mg/L. Nor was any nitrite concentration near 30 mg/L as defined in the ANZECC|ARMCANZ livestock standards. Total N figures were significantly less than the short-term trigger range of 25-125 mg/L. Several bores exceeded the lower trigger of P concentration (0.8-12 mg/L), however it is outlined in the guidelines that the value or range for P needs to be determined specific to a site. No site- specific analysis has been conducted at Ashton to define an appropriate P trigger at this time. Turbidity does not have a defined livestock limit for comparison, though analysis of the results indicates that bores that are typically hand bailed rather than pumped yield the greatest turbidity. Cyanide concentrations were so low across samples that no reading was detected above the limit of reporting (LOR). Cyanide levels did not breach any outlined standards.

4.2 Coal measure and coal measure overburden (CMOB) aquifer monitoring

Groundwater level and quality measurements for coal measure and CMOB monitoring bores were taken throughout 2020. Longwall specific VWP pressure heads were also recorded. Hydrographs for these bores are presented in Figure 4.23 through to Figure 4.31.

4.2.1 Coal measure and CMOB aguifer groundwater levels

The groundwater level trends for coal measure and CMOB monitoring bores are presented in Figure 4.23 and Figure 4.24, respectively. Groundwater level measurements for LW203 specific monitoring bores are presented in Figure 4.25, and groundwater trends for the recently started longwall LW204 are depicted in Figure 4.26. Longwall specific VWP readings for LW203 and LW204 are shown in Figure 4.27. Daily rainfall measurements and CRD have also been plotted and used to compare water level trends.

The following observations can be noted for 2020:

- Water levels were relatively stable in coal measure bores, except for monitoring bore GM1 which fluctuated throughout the year (Figure 4.23).
- Groundwater elevation in CMOB bores generally increased in 2020, correlating with an increasing CRD (Figure 4.24).
- Groundwater levels in monitoring bores within the vicinity of LW203 and LW204 remained stable over 2020 (Figure 4.25 and Figure 4.26, respectively).
- VWP measurements in WMLP269 (adjacent LW203/204) remained stable throughout the year (Figure 4.27), except for Lemington 7 and Lemington 19 sensors. Lemington 7 recorded a decline in pressure head in August, stabilising thereafter. Lemington 19 also recorded a pressure head decline in August, with pressure head remaining depressed thereafter. No impacts associated with mining of LW203/LW204 are evident from VWP monitoring in 2020. However, it should be noted that VWP WMLP269 is not situated particularly close to LW203 and is only used as the monitoring reference as it is the closest proximity VWP to current mining operations.
- Overall, coal measure and CMOB bores did not appear to be impacted by mining outside of predictions in 2020.

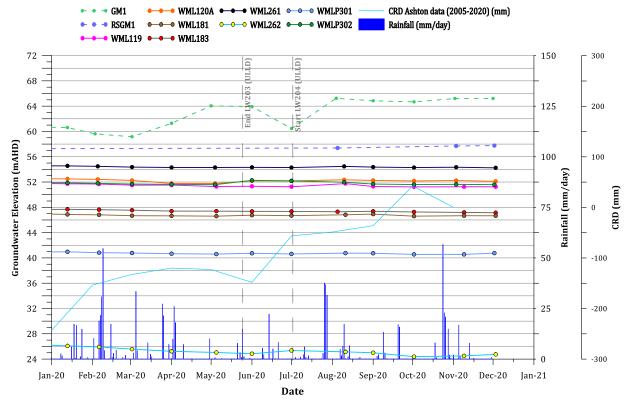


Figure 4.23 Coal measure bore hydrographs

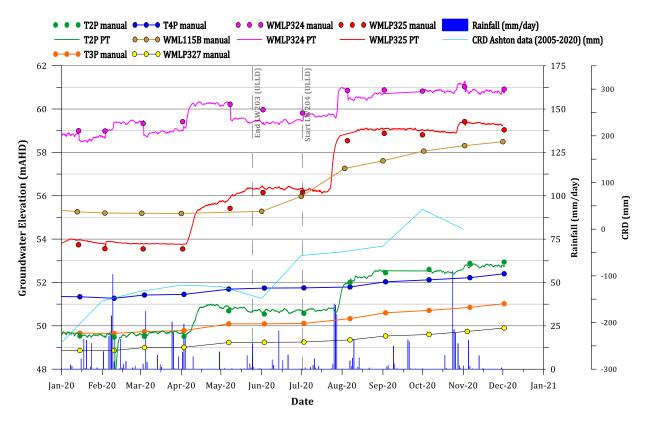


Figure 4.24 Coal measure overburden bore hydrographs

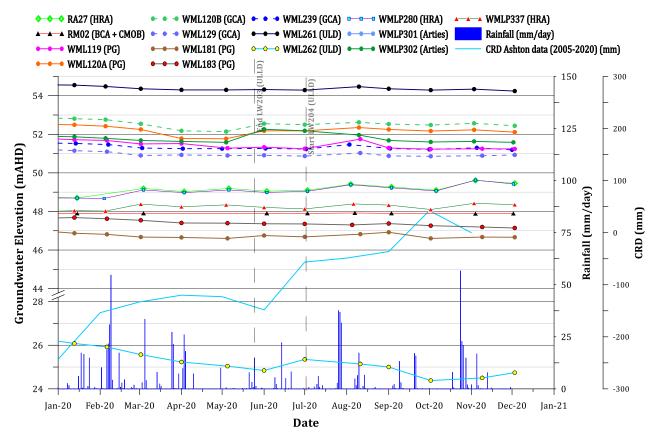


Figure 4.25 Hydrographs for monitoring bores in vicinity of LW203

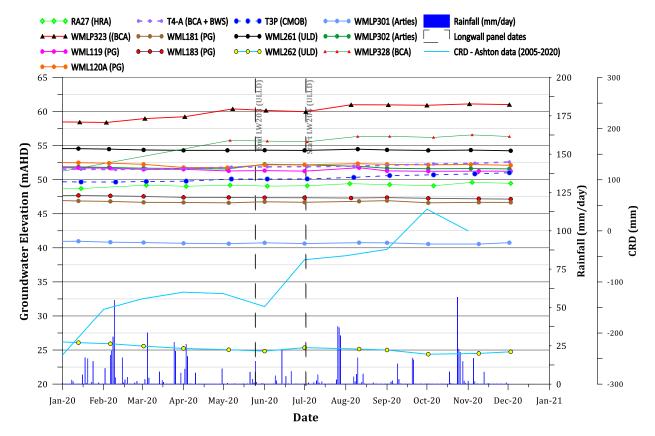


Figure 4.26 Hydrographs for monitoring bores in vicinity of LW204

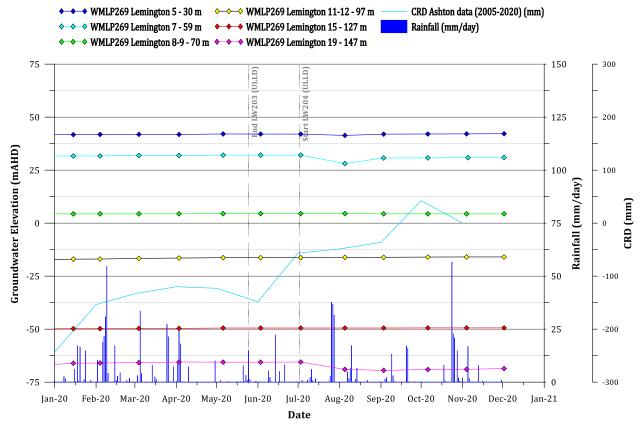


Figure 4.27 Hydrographs for VWP WMLP269 in vicinity of LW203/LW204

4.2.2 pH, electrical conductivity and major ions

Coal measure and CMOB bores across the ACP monitoring network were sampled for pH, EC and major ions during 2020, and the results are presented graphically in Figure 4.28 through to Figure 4.31. A complete table of results for the aforementioned parameters is presented in Appendix D; together with comprehensive analysis measurements recorded during annual sampling in August 2020. All associated laboratory files can be found in Appendix F.

Groundwater pH in coal measure and CMOB bores was generally neutral to slightly alkaline in 2020, as has been the case in previous years. pH readings were broadly stable over 2020, predominantly ranging from pH 6.75 to 8. Exceptions to the outlined pH range were few and minor, with the degree of variation considered within natural variation. The specific pH ranges measured within coal measure and CMOB bores in 2020 were:

- Coal measure pH 6.42 (WMLP302) to 8.08 (WML262); and
- CMOB pH 6.61 (T2P) to 7.50 (T3P).

Groundwater EC was fresh to brackish across the coal measure and CMOB monitoring network in 2020. EC levels were relatively steady throughout 2020, except for WMLP325 which recorded a sharp drop in EC between the May and August monitoring round. No other prevailing trends were evident. Minor fluctuations occurred during the year, though the overall trend was stable. EC ranges for coal measure and CMOB bores in 2020 were:

- Coal measure 580 (WML120A) to 4,218 μS/cm (WML183); and
- CMOB 896 (WMLP324) to 2,408 μS/cm (WML115B).

The major ion content for coal measure and CMOB bores was also assessed in 2020 (Appendix E). The cation water type in all monitoring bores were Na or Ca dominant. With respect to anions, Cl dominates coal measure and CMOB monitoring bores. The coal measure water types are easily distinguished from the CMOB water types with coal measure bores bearing greater Mg concentration, whilst CMOB bores contained higher Ca concentrations.

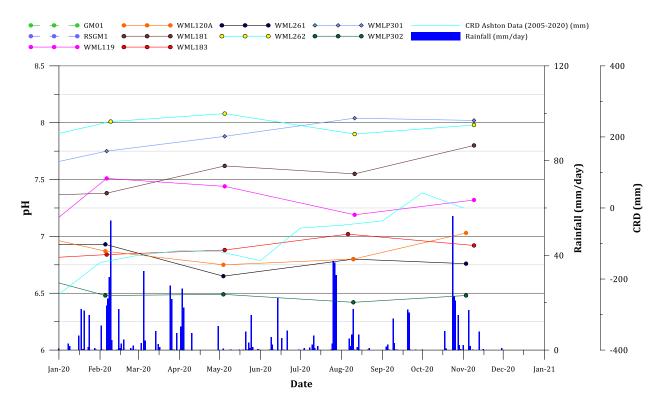


Figure 4.28 Coal measure bore pH trends

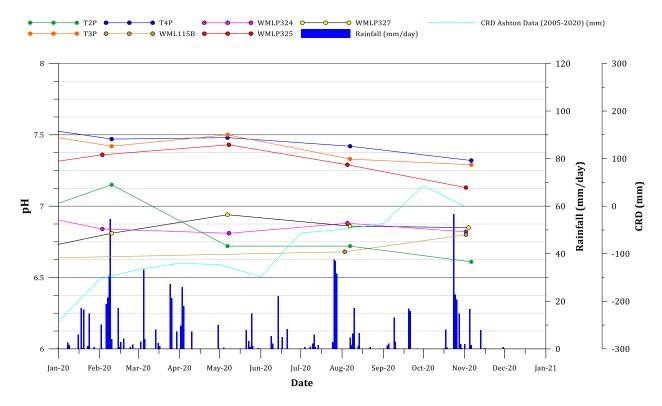


Figure 4.29 Coal measure overburden bore pH trends

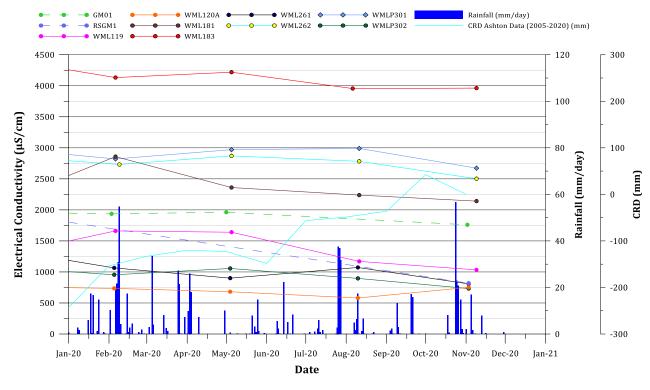


Figure 4.30 Coal measure bore EC trends

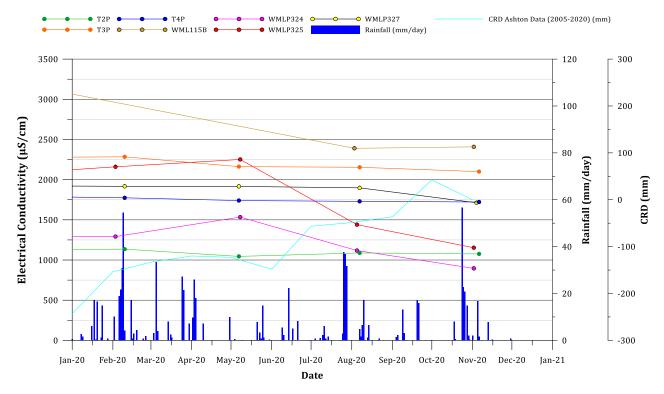


Figure 4.31 Coal measure overburden bore EC trends

4.2.3 Dissolved metals, select nutrients, turbidity and cyanide

Comprehensive lab analysis during August 2020 incorporated the measurement of select dissolved metals, select nutrients, turbidity and cyanide as tabulated in Appendix D.

Dissolved metals concentrations were compared against ANZECC|ARMCANZ livestock limits (ANZECC & ARMCANZ, 2000), revealing no breaches for any of the metals assessed (arsenic, cadmium, chromium, copper, lead, nickel, selenium and zinc). Manganese and iron were detected at very low concentrations, though neither of these metals are regarded as specifically toxic at such concentrations; and no ANZECC|ARMCANZ livestock limit is established for these metals.

Select nutrients analysis included nitrite and nitrate as N, total Kjeldahl nitrogen as N, total nitrogen as N and total phosphorous as P. All N related concentrations were low, and no nitrate concentration was close to 400 mg/L. Nor was any nitrite concentration near 30 mg/L as defined in the ANZECC|ARMCANZ livestock standards. Total N figures were significantly less than the short-term trigger range of 25-125 mg/L. Several bores exceeded the lower trigger of P concentration (0.8-12 mg/L), however it is outlined in the guidelines that the value or range for P needs to be determined specific to a site. No site-specific analysis has been conducted at Ashton to define an appropriate P trigger at this time. Turbidity does not have a defined livestock limit for comparison, though analysis of the results indicates that bores that are typically hand bailed rather than pumped yield the greatest turbidity. Cyanide concentrations were so low across samples that no reading was detected above the limit of reporting (LOR). Cyanide levels did not breach any outlined standards.

5 EPL 11879 monitoring bores

Results for 2020 monitoring of EPL 11879 monitoring bores (per Licence Variation November 2019) are summarised in Table 5.1 (levels) and Table 5.2 (EC).

Table 5.1 EPL 11879 monitoring bore groundwater levels (2020)

Davis ID	Feb 2020	Aug 2020	Dec 2020				
Bore ID	Groundwater levels (mTOC)						
YAP016	6.18	3.40	3.70				
WMLP320	8.86	6.65	6.70				
WMLP279	13.28	12.51	12.54				
WMLP280	11.85	11.14	11.10				
WML120B	7.75	7.89	8.07				
WML129	4.24	4.31	4.41				
WMLP336	12.20	12.21	12.15				
GM1	13.82	8.20	8.23				
WML120A	8.53	8.60	8.84				
WML262	33.80	34.58	34.98				
WML181	17.49	17.48	17.64				
WML183	29.10	29.42	29.58				

Notes: mtoc = metres top of casing.

Table 5.2 EPL 11879 monitoring bore groundwater EC measurements (2020)

D ID	Feb 2020	Aug 2020	Dec 2020				
Bore ID	Groundwater EC (μS/cm)						
YAP016	1256	857	1072				
WMLP320	_*	1706	_\$				
WMLP279	1030	860	791				
WMLP280	1394	1296	1182				
WML120B	465	426	410				
WML129	385	432	486				
WMLP336	594	529	509				
GM1	1936	1908	_\$				
WML120A	735	580	_\$				
WML262	2731	2782	_\$				
WML181	2858	2238	_\$				
WML183	4132	3955	_\$				

Notes: \$ No EC measurements recorded

[#] Registered a water level, but insufficient water to sample.

6 Mine inflow

Ashton underground mine inflows are calculated through a review of dewatering abstraction volumes and a water balance assessment. The water balance assessment is the most appropriate tool to assess mine inflows as the volume of abstracted water comprises water from several sources, including but not limited to groundwater, surface water, incidental take and groundwater transitioning from the point of entry to the abstraction point. The transition time of this "stored" water is assumed to be in the order of years and is normally not considered inflow that has occurred in the past year. It is considered that the stored water is largely from the groundwater sources (predominantly hardrock) rather than surface water. A proportion of abstracted water is understood to have in-flowed prior to 2020 and was stored temporarily in the goaf. A proportion of the 2020 incidental take has continued to be stored underground or was lost through coal moisture and water vapour via outgoing air.

Data utilised in the assessment includes:

- metered water volumes pumped to the mine from the various sources;
- metered water abstracted from the mine:
- partitioned water takes (from the groundwater modelling) from the surface water sources and the separate groundwater sources; and
- estimate of stored water pumped from the mine.

These volumes are summarised in Table 6.1. During 2020, Ashton abstracted 396 ML of water via borehole 5 (BH5), borehole 6 (BH6) and the underground portal. Of that volume, 245.5 ML was introduced into the mine as operational water; therefore, the difference of 150.5 ML is considered a portion of the incidental water take. The remainder of the predicted incidental water (348.4 ML) is considered to be stored in the underground workings or to have been lost through the coal moisture and water vapour via out-by air. The value for estimated stored volume of incidental take of 348.4 ML is considered large and the water level in the underground workings has not increased recently. Therefore, we suggest that this value is not entirely representative of the inflow and that further investigation needs to be undertaken. Additionally, the site abstraction rate and metering should also be reviewed.

The groundwater model (AGE, 2020) predicted that the underground inflow rate into the mine for the period of 2020 would have been 15.8 L/sec. The average 2020 water abstraction rate was 12.6 L/sec.

Table 6.1 Breakdown of abstracted water volumes (2020)

Tabi	C 0.1	Dicardown of abstracted water volumes (2020)				
Total water abstracted from mine via BH5, BH6 and Portal		Mine water input (metered)	245.5 ML			
	396 ML	Estimate of abstracted water considered inflow water	150.5 ML		Total predicted	
		Portion of incidental water take considered stored in underground and/or lost via coal moisture and water vapour in out-by air	348.4 ML	498.9 ML	incidental water- take for 2020 (from 2020 GW)	

7 Summary

Groundwater monitoring over the 2020 reporting period was consistent with the requirements outlined in the WMP. A summary of the findings of this report is as follows:

- Two BCA bores exceeded EC triggers over three consecutive periods during 2020 monitoring bores WMLP323 and WMLP328, triggering an investigation. The investigation concluded that BCA EC levels have increased as a result of reduced rainfall since 2018. A prolonged dry period decreased water levels in all the bores to unprecedented levels. This allowed salts to accumulate in the unsaturated zone. These salts were then remobilised by a rising water table after significant rainfall in early 2020, causing the EC exceedances in groundwater at WMLP323 and WMLP328. It should be noted that ACP is approved to intercept the BCA groundwater resource under DA 309-11-2011-i MOD 5.
- BCA regulatory bore water levels increased throughout 2020. Over the course of the year, three
 of the previously dry BCA trigger bores returned water level readings; T2A during August,
 WMLP328 and WMLP311 during April. All BCA trigger bores were recorded above respective
 trigger values from April, except for T2A which recorded readings above trigger value from
 August.
- Other previously dry BCA bores recorded water level measurements in 2020 including; PB1, RA18 and T5. Groundwater level increase within these bores corresponds to an increasing CRD throughout 2020.
- GCA groundwater levels were generally stable throughout 2020. All GCA monitoring bores remained above established triggers in 2020.
- HRA regulatory bore water levels were relatively steady throughout the year, except for monitoring bore WMLP280 and WMLP279 which increased during 2020. All HRA monitoring bores remained above established triggers in 2020.
- Bowmans Creek has returned surface water elevation readings since August after being dry throughout 2019 and early 2020. Glennies Creek and Hunter River water levels were relatively steady over the year, with sudden water level spikes following heavy rainfall events.
- Water levels were relatively stable in coal measure bores, except for monitoring bore GM1 which
 fluctuated throughout the year. Groundwater elevation in CMOB bores display a general
 increased in 2020, which corresponds to an increasing CRD and increased rainfall recharge.
- VWP measurements in WMLP269 (adjacent LW203/204) remained stable throughout the year, except for Lemington 7 and Lemington 19 sensors. Lemington 7 recorded a decline in pressure head in August before returning to a stable reading the following month. Lemington 19 also recorded a pressure head decline in August, with pressure head remaining depressed thereafter. No impacts associated with mining of LW203/LW204 are evident from VWP monitoring in 2020.
- Groundwater pH measurements were stable during 2020. No consecutive pH exceedances occurred, and slight changes in pH are attributed to natural variation.
- GCA and HRA EC levels in 2020 were steady overall, except for HRA bores WMLP337 and WMLP279 which both recorded a significant decline in EC values. BCA monitoring bores WML113C, WMLP328, WMLP323 and WMLP311 all recorded a significant decline in EC over the 2020 monitoring period. Lower recorded EC values throughout 2020 is attributed to increased rainfall in the region.
- Coal measure and CMOB EC levels were relatively steady over the year, except for WMLP325 which recorded a sharp decline in EC between the May and August monitoring rounds. No other prevailing trends were evident.
- Major ion analysis indicated that the CMOB, BCA and HRA water types are similar and can be
 distinguished from the GCA and the coal measure water types, which is due to the water source
 and the recharge/discharge mechanism associated with each body.

- Dissolved metals, select nutrients, turbidity and cyanide concentrations within ACP monitoring bores were compared against ANZECC|ARMCANZ livestock limits (ANZECC & ARMCANZ, 2000), revealing no breaches for any of the analytes assessed. Several bores exceeded the lower trigger of phosphorous concentration (0.8-12 mg/L), however it is outlined in the guidelines that the value or range for phosphorous needs to be determined specific to a site. No site-specific analysis has been conducted at Ashton to define an appropriate phosphorous trigger at this time.
- EPL 11879 listed monitoring bore water levels displayed varying results overall throughout 2020. EC in some EPL 11879 bores decreased, whilst other bores displayed an increase in EC during 2020.
- Underground mine inflows are within predicted limits, but a review of site data is recommended to confirm the accuracy of abstraction volume estimates.

Generally, the site has experienced no mining impacts to the BCA, GCA and HRA alluvial aquifers and impacts are within predictions in the coal measures.

8 References

Ashton Coal (2018), *Water Management Plan version 10, HSEC Management System – Plan, Doc No. 3.4.1.8.* Yancoal.

Ashton Coal (2020), Water Management Plan version 11, HSEC Management System – Plan, Doc No. 3.4.1.8., Yancoal.

Australasian Groundwater & Environmental Consultants (AGE) (2019), *Yancoal – Ashton Coal Operartions Groundwater Model Three-Year inflows and impact predictions*, Project No. G1922J.

Australasian Groundwater & Environmental Consultants (AGE) (2020), *Yancoal – Ashton WMLP323 EC trigger investigation*, Project No. G1922N.

Australian and New Zealand Environment and Conservation Council (ANZECC), and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), (2000), *Australian and New Zealand Guidelines for Fresh and Marine Water Quality – Volume 1: The Guidelines (Chapters 1-7)*, National Water Quality Management Strategy Paper No. 4. October 2000.

Department of Primary Industries Office of Water (2016), *Rivers and Streams Digital Data*, http://realtimedata.water.nsw.gov.au/water, Sydney NSW.

Food and Agricultural Organisation of the United Nations (FAO), (1992) *The use of saline waters for crop production – FAO irrigation and drainage paper 48*. http://www.fao.org/docrep/t0667e/t0667e05.htm

Table A1 GWMP monitoring bore locations

ID	Туре	Easting (GDA94 Z56)	Northing (GDA94 Z56)	Top of casing (mAHD)	Depth (mBGL)
Ashton Well	Monitoring bore	318355	6406029	62	-
GM1	EPL Monitoring bore*	318431	6407214	67	203
GM3A	Monitoring bore	320246.5	6405976.9	59	7.5
GM3B	Monitoring bore	320250.9	6405976.7	59	16.2
PB1	Monitoring bore	317545	6405301	61.1	7.8
RA02	Monitoring bore	317712.8	6405233	55.2	11.3
RA18	Monitoring bore	317821.8	6405434.2	62.6	8.5
RA27	Monitoring bore	317952.1	6403738	61.6	10.7
RM01	Monitoring bore	318041	6404109.5	69.4	9.8
RM02	Monitoring bore	317942	6404506	61.1	12.9
RM03	Monitoring bore	317667	6404844.5	62.1	9.5
RM10	Monitoring bore	317589	6405292	61.6	10.5
RSGM1	Monitoring bore	317655	6406302	65.6	8.5
T2-A	Monitoring bore	317583.3	6405217.4	60.8	7.9
T2-P	Monitoring bore	317587	6405222	60.7	14.5
Т3-А	Monitoring bore	317654.2	6404708	59.9	10.8
Т3-Р	Monitoring bore	317650	6404702	59.8	22.8
T4-A	Monitoring bore	317685.8	6404323.1	58.6	10.7
T4-P	Monitoring bore	317683	6404319	58.5	17.5
T5	Monitoring bore	317946.1	6406549.4	65.3	8.3
WML113A	Vibrating wire piezometer	317369	6404529	60.2	125
WML113C	Monitoring bore	317377	6404526	60.2	11.2
WML115B	Monitoring bore	317881	6406704	66.4	13
WML115C	Monitoring bore	317888	6406710	66.2	6.2
WML119	Monitoring bore	319255.3	6403930.1	61.5	25.8
WML120A	EPL Monitoring bore*	319292	6404579.6	60.4	15
WML120B	EPL Monitoring bore*	319293.6	6404587.5	60.1	9
WML129	EPL Monitoring bore*	319468.4	6403527.8	55.3	4.6
WML181	EPL Monitoring bore*	319215	6403958.3	64.3	36.7
WML183	EPL Monitoring bore*	319188.2	6404325.2	76.7	45.5
WML213	Vibrating wire piezometer	317210	6404154	61.5	316
WML239	Monitoring bore	319345	6404044.8	58.8	12.2
WML245	Vibrating wire piezometer 320035 6404835		6404835	64.9	110
WML261	Monitoring bore	319320.2	6404705.9	58.7	43

ID	Туре	Easting (GDA94 Z56)	Northing (GDA94 Z56)	Top of casing (mAHD)	Depth (mBGL)
WML262	EPL Monitoring bore*	319220.1	6403927.7	63.2	60.3
WMLP269	Vibrating wire piezometer	317850	6404073	65.5	147
WMLC144	Vibrating wire piezometer	319500	6404170	59.3	132
WMLC248	Vibrating wire piezometer	319326	6404721	58.5	144.6
WMLC334	Vibrating wire piezometer	318589	6403088	75.9	218.5
WMLC335	Vibrating wire piezometer	318892	6402936	64.5	200.5
WMLP277	Monitoring bore	317643.2	6403958.5	59	13.3
WMLP278	Monitoring bore	317626.3	6403894.2	62.3	11.5
WMLP279	EPL Monitoring bore*	317298.9	6403991.8	62.7	17.2
WMLP280	EPL Monitoring bore*	317797.6	6403793.4	62.5	14.9
WMLP301	Monitoring bore	319235	6403858	60.2	41.5
WMLP302	Monitoring bore	319299.6	6404600.2	59.7	25.2
WMLP308	Monitoring bore	318222.7	6406373	65.7	8.9
WMLP311	Monitoring bore	318178.9	6406047.9	63.6	7.6
WMLP320	EPL Monitoring bore*	317457.2	6405388	61.5	8.5
WMLP323	Monitoring bore	318242.2	6406594.7	64.5	7.3
WMLP324	Monitoring bore	318240	6406594	64.5	14.1
WMLP325	Monitoring bore	318181	6406050	63.7	14.6
WMLP326	Monitoring bore	317571	6404103.2	59.3	11.9
WMLP327	Monitoring bore	317573	6404103	59.4	18.3
WMLP328	Monitoring bore	317927.3	6405611.6	62.8	11.5
WMLP336	EPL Monitoring bore*	318965.4	6402841.9	60.6	15.5
WMLP337	Monitoring bore	318418	6403129	59.9	13.5
WMLP338	Monitoring bore	318624.7	6402794	58.8	12.9
WMLP343	Monitoring bore	319623	6404606	61	9.6
WMLP346	Monitoring bore	319366.5	6404457.2	60.68	11.5
WMLP349	Monitoring bore	319516	6404198	58.3	8.7
WMLP358	Monitoring bore	319560	6403704	59.49	9.3
WMLP361	Vibrating wire piezometer	317722	6405962	62.9	191
WMLP363	Vibrating wire piezometer	317963	6406634	66	164
YAP016	EPL Monitoring bore*	318438	6407195	66.8	7.3

Note: * Per EPL 11879 (Licence version date: 21 November 2019).

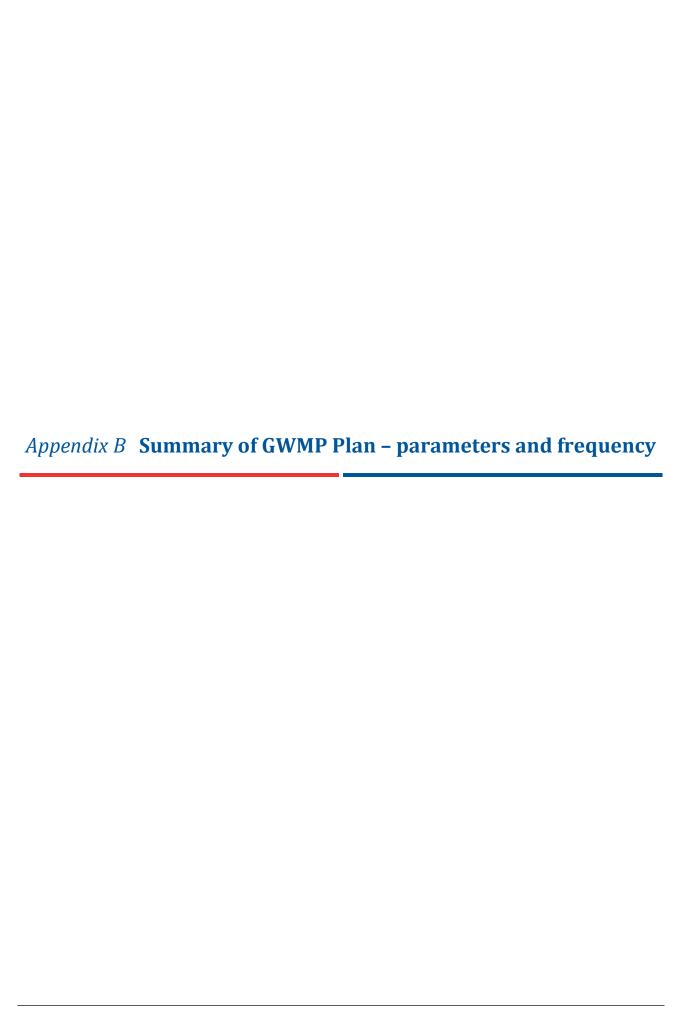
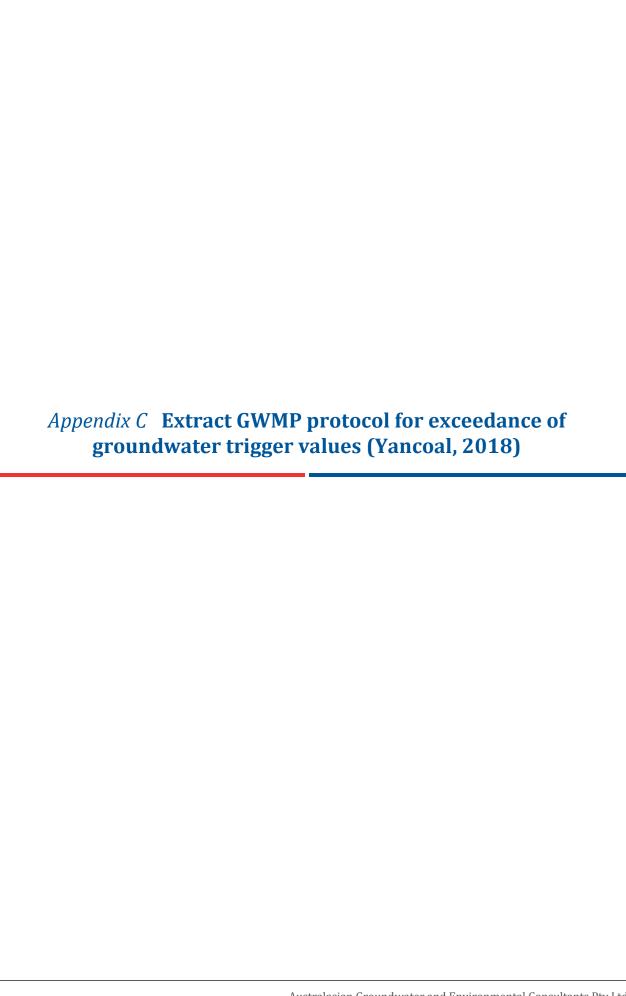


 Table B1
 Summary of groundwater monitoring program

ID	Туре	Data recording method	Targets	Monthly	Quarterly	Annually
Ashton Well	Monitoring bore	-	BCA	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
GM1	EPL Monitoring bore*	-	Coal measure	Water level only	Monthly plus field EC only	Quarterly plus field parameters and comprehensive analysis
GM3A	Monitoring bore	-	GCA	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
GM3B	Monitoring bore	-	GCA	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
PB1	Monitoring bore	-	BCA	Water level only	Monthly plus field EC only	Quarterly plus minor lab analysis
RA02	Monitoring bore	-	BCA + CMOB	Water level only	Monthly plus field EC only	Quarterly plus field parameters and comprehensive analysis
RA18	Monitoring bore	-	BCA	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
RA27	Monitoring bore	-	HRA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis
RM01	Monitoring bore	-	BCA	Water level only	Monthly plus field EC only	Quarterly plus minor lab analysis
RM02	Monitoring bore	-	BCA + CMOB	Water level only	Monthly plus field EC only	Water level and field EC only
RM03	Monitoring bore	-	BCA + CMOB	Water level only	Monthly plus field EC only	Quarterly plus minor lab analysis
RM10	Monitoring bore	-	BCA + CMOB	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus minor lab analysis
RSGM1	Monitoring bore	-	Coal measure (BWS)	Water level only	Monthly plus field EC only	Quarterly plus field parameters and comprehensive analysis
T2-A	Monitoring bore	Pressure transducer	BCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis


ID	Туре	Data recording method	Targets	Monthly	Quarterly	Annually	
Т2-Р	Monitoring bore	Pressure transducer	СМОВ	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis	
Т3-А	Monitoring bore	-	BCA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis	
Т3-Р	Monitoring bore	-	СМОВ	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis	
T4-A	Monitoring bore	-	BCA + BWS	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis	
T4-P	Monitoring bore	-	СМОВ	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis	
Т5	Monitoring bore	Pressure transducer	BCA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis	
WML113A	Vibrating wire piezometer	-	BW 2, Lem 4, Lem 9, Lem 11- 12, Lem 15	Pressure head	Pressure head	Pressure head	
WML113C	Monitoring bore	Pressure transducer	ВСА	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WML115B	Monitoring bore	-	CMOB & Lem 3-4	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis	
WML115C	Monitoring bore	-	ВСА	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis	
WML119	Monitoring bore	-	PG	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis	
WML120A	EPL Monitoring bore*	-	PG	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis	
WML120B	EPL Monitoring bore*	-	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WML129	EPL Monitoring bore*	Pressure transducer	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	

ID	Туре	Data recording method	Targets	Monthly	Quarterly	Annually
WML181	EPL Monitoring bore*	-	- PG Water level only		Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WML183	EPL Monitoring bore*	-	PG	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WML213	Vibrating wire piezometer	-	BWS, Lem 8-9, Lem 15, Lem 19, PG, ULD, ULLD, LB	Pressure head	Pressure head	Pressure head
WML239	Monitoring bore	Pressure transducer	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WML245	Vibrating wire piezometer	-	ULD, MLD, LB, LB-HEB int	Pressure head	Pressure head	Pressure head
WML261	Monitoring bore	-	ULD	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WML262	EPL Monitoring bore*	-	ULD	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WMLP269	Vibrating wire piezometer	-	Lem 5, Lem 7, Lem 8-9, Lem 11-12, Lem 15, Lem 19	Pressure head	Pressure head	Pressure head
WMLC144	Vibrating wire piezometer	-	ULD, MLD1, MLD2, ULLD, LLLD, UBS, LB	Pressure head	Pressure head	Pressure head
WMLC248	Vibrating wire piezometer	-	ULD, ULLD, LB, HEB	Pressure head	Pressure head	Pressure head
WMLC334	Vibrating wire piezometer	-	Lem 13, Lem 15, Lem 18/19, Art, ULD, ULLD, UB, LB	Pressure head	Pressure head	Pressure head
WMLC335	Vibrating wire piezometer	-	Lem 15B, Lem 17, PG Upper, Art, ULD, LLLD, UB, LB	Pressure head	Pressure head	Pressure head
WMLP277	Monitoring bore	Pressure transducer	HRA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis
WMLP278	Monitoring bore	-	HRA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis

ID	Туре	Data recording method	Targets	Monthly	Quarterly	Annually
WMLP279	EPL Monitoring bore*	-	HRA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WMLP280	EPL Monitoring bore*	-	HRA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WMLP301	Monitoring bore	-	Arties Seam	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WMLP302	Monitoring bore	-	Arties Seam	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WMLP308	Monitoring bore	-	ВСА	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis
WMLP311	Monitoring bore	Pressure transducer	BCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WMLP320	EPL Monitoring bore*	-	ВСА	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
WMLP323	Monitoring bore	Pressure transducer	BCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WMLP324	Monitoring bore	Pressure transducer	СМОВ	Water level only	Monthly plus field parameters and minor lab analysis	Quarterly plus comprehensive analysis
WMLP325	Monitoring bore	Pressure transducer	СМОВ	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis
WMLP326	Monitoring bore	-	BCA	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
WMLP327	Monitoring bore	-	СМОВ	Water level only	Monthly plus field parameters	Quarterly plus minor lab analysis
WMLP328	Monitoring bore	Pressure transducer	BCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis
WMLP336	EPL Monitoring bore*	-	HRA + CMOB	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis

ID	Туре	Data recording method	Targets	Monthly	Quarterly	Annually	
WMLP337	Monitoring bore	-	HRA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WMLP338	Monitoring bore	-	HRA	Water level only	Monthly plus field parameters	Quarterly plus comprehensive analysis	
WMLP343	Monitoring bore	Pressure transducer	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WMLP346	Monitoring bore	Pressure transducer	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WMLP349	Monitoring bore	-	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WMLP358	Monitoring bore	-	GCA	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	
WMLP361	Vibrating wire piezometer	VWP datalogger	Lem 5, Lem 8, Lem 15A, Art, ULD	Pressure head	Pressure head	Pressure head	
WMLP363	Vibrating wire piezometer	VWP datalogger	CMOB, Lem 8, Lem 9-10 int, Lem 12, Lem 14, Lem 15, PG roof, ULD	Pressure head	Pressure head	Pressure head	
YAP016	EPL Monitoring bore*	Pressure transducer	ВСА	Water level and field parameters	Monthly plus minor lab analysis	Quarterly plus comprehensive analysis	

Note: * Per EPL 11879 (Licence version date: 21 November 2019).

In the event of a groundwater assessment criterion (Table 23 and Section 7.2) being exceeded, the following protocol will be followed:

- 1. Check and validate the data which indicates an exceedance of the criterion, including whether the exceedance is ongoing.
- 2. A preliminary investigation will be undertaken to establish the cause(s) and determine whether changes to the water management system or operations are required. This will involve the consideration of the monitoring results in conjunction with:
 - a) site activities being undertaken at the time;
 - b) activities at nearby operations (cumulative affects);
 - c) groundwater extraction by others;
 - d) baseline monitoring results and natural fluctuations;
 - e) predictive modelling;
 - f) groundwater monitoring at nearby locations;
 - g) the prevailing and preceding meteorological and streamflow conditions; and
 - h) changes to the land use/activities being undertaken nearby.
- 3. If the preliminary investigation shows that the impact is linked to activities undertaken by ACOL, a report will be emailed to the DPE and any other relevant department. Causal factors will be addressed and rectified if possible. Contingency measures will be developed in consultation with the DPE and any other relevant department and implemented in response to the outcomes of the investigation.
- 4. Remedial/compensatory measures will be developed in consultation with DPE and any other relevant department and implemented in response to the outcomes of the investigations.
- 5. Monitoring would be implemented as required to confirm the effectiveness of remedial measures.
- 6. Where required, an independent hydrogeologist will be engaged to conduct investigations. ACOL will seek the Secretary of DPE's approval in selecting a hydrogeologist.

Any exceedances and responses taken to ameliorate these exceedances will be reported in the Annual Review.

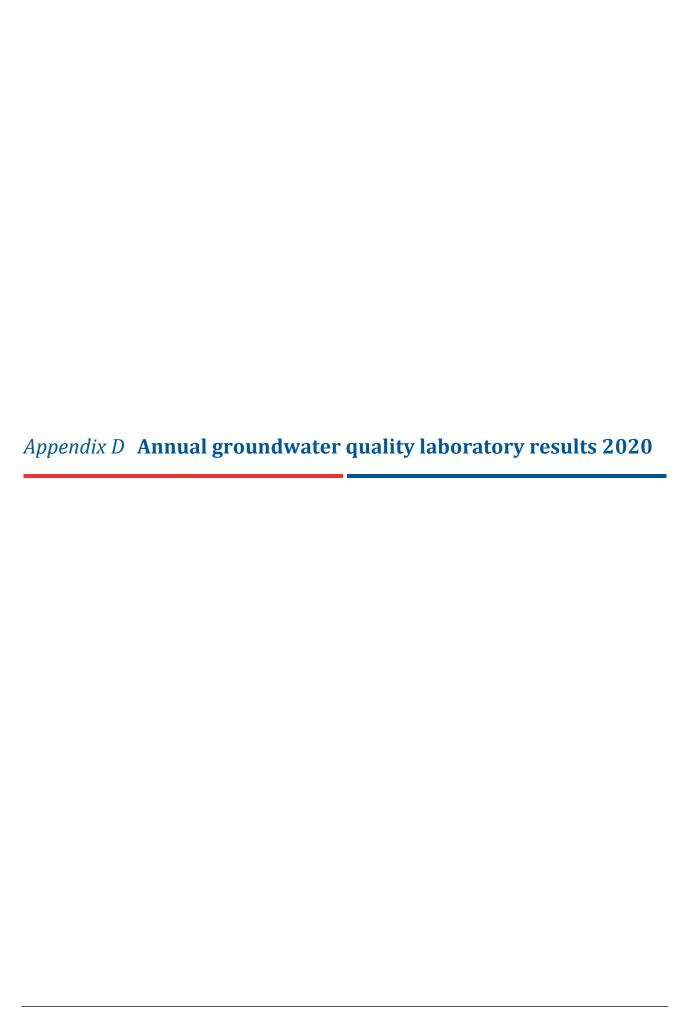


Table D1 Annual groundwater quality results - field and laboratory (2020)

Bore ID	Geology	Laboratory ID	Date	pH Value (Field)	pH Value (Lab)	pH RPD	EC (Field)	EC (Lab)	EC RPD	Total Dissolved Solids (TDS)
Units				рН	рН	%	μS/cm	μS/cm	%	mg/L
Limit of Reporting (LOR)					0.01			1		10
ANZECC livestock limits							5970	5970*		4000
Ashton Well	BCA	ES2028057015	5/08/2020	7.50	7.50	0.00	355	349	1.59	237
PB1	BCA	ES2028057038	10/08/2020	7.20	7.66	-6.19	2750	2610	5.22	2060
RM10	BCA	ES2028057039	10/08/2020	6.96	6.82	2.03	1417	1520	-7.01	1001
T2A	BCA	ES2028057034	7/08/2020	7.11	7.13	-0.28	1331	1370	-2.89	826
T3A	BCA	ES2028057032	7/08/2020	6.92	7.10	-2.57	2154	2080	3.50	1260
T4A	BCA	ES2028057029	7/08/2020	7.00	7.26	-3.65	1381	1400	-1.37	812
Т5	BCA	ES2028057016	5/08/2020	6.92	6.75	2.49	707	623	12.63	456
WML113C	BCA	ES2028057031	7/08/2020	6.96	6.99	-0.43	1310	1320	-0.76	778
WML115C	BCA	ES2028057002	03/08/2020	7.28	7.17	1.52	571	432	27.77	387
WMLP308	BCA	ES2028057020	5/08/2020	7.03	7.14	-1.55	1475	1500	-1.68	903
WMLP311	BCA	ES2028057022	5/08/2020	7.04	6.94	1.43	733	749	-2.23	504
WMLP320	BCA	ES2028057037	10/08/2020	6.90	7.11	-3.00	1706	1720	-0.82	1224
WMLP323	BCA	ES2028057018	5/08/2020	6.67	6.92	-3.68	902	904	-0.20	566
WMLP326	BCA	ES2028057027	7/08/2020	7.10	7.43	-4.54	1356	1340	1.19	960
WMLP328	BCA	ES2028057036	10/08/2020	7.02	7.03	-0.14	1277	1320	-3.31	865
YAP016	BCA	ES2028057009	4/08/2020	7.02	7.01	0.14	857	848	1.03	553
T2P	CMOB	ES2028057035	7/08/2020	6.72	6.86	-2.06	1088	1090	-0.18	665
T3P	CMOB	ES2028057033	7/08/2020	7.33	7.67	-4.53	1878	1850	1.50	945
T4P	CMOB	ES2028057030	7/08/2020	7.42	7.69	-3.57	1730	1710	1.16	1000
WML115B	CMOB	ES2028057001	3/08/2020	6.68	7.15	-6.80	2390	2480	-3.70	1783
WMLP324	CMOB	ES2028057019	5/08/2020	6.88	6.81	1.02	1118	1160	-3.69	694
WMLP325	CMOB	ES2028057021	5/08/2020	7.29	7.32	-0.41	1440	1480	-2.74	836
WMLP327	CMOB	ES2028057028	7/08/2020	6.86	7.30	-6.21	1898	1630	15.19	1365
GM1	Coal	ES2028057008	04/08/2020	7.11	7.43	-4.40	1908	1850	3.09	1090
WML119	Coal	ES2028057046	11/08/2020	7.19	7.72	-7.11	1170	1250	-6.61	720

Bore ID	Geology	Laboratory ID	Date	pH Value (Field)	pH Value (Lab)	pH RPD	EC (Field)	EC (Lab)	EC RPD	Total Dissolved Solids (TDS)
Units				pН	рН	%	μS/cm	μS/cm	%	mg/L
Limit of Reporting (LOR)					0.01			1		10
ANZECC livestock limits							5970	5970*		4000
WML120A	Coal	ES2028057042	10/08/2020	6.80	7.07	-3.89	580	590	-1.71	340
WML181	Coal	ES2028057047	11/08/2020	7.55	8.07	-6.66	2238	2210	1.26	1390
WML183	Coal	ES2028057026	6/08/2020	7.02	7.53	-7.01	3955	3880	1.91	3120
WML261	Coal	ES2028057040	10/08/2020	6.80	7.28	-6.82	1072	1140	-6.15	646
WML262	Coal	ES2028057048	11/08/2020	7.90	8.31	-5.06	2782	2730	1.89	1730
WMLP301	Coal	ES2028057045	11/08/2020	8.04	8.25	-2.58	2990	2980	0.34	2220
WMLP302	Coal	ES2028057041	10/08/2020	6.42	6.91	-7.35	896	946	-5.43	526
WML120B	GCA	ES2028057043	10/08/2020	6.72	6.94	-3.22	426	439	-3.05	258
WML129	GCA	ES2028057044	11/08/2020	6.85	6.78	1.03	432	439	-1.72	236
WML239	GCA	ES2028057004	3/08/2020	6.82	6.95	-1.89	642	672	-4.57	393
WMLP343	GCA	ES2028057007	3/08/2020	6.85	7.15	-4.29	617	646	-4.56	375
WMLP346	GCA	ES2028057006	3/08/2020	6.82	6.92	-1.46	394	422	-6.91	243
WMLP349	GCA	ES2028057005	3/08/2020	6.62	6.88	-3.85	870	914	-4.93	537
WMLP358	GCA	ES2028057003	3/08/2020	6.45	6.59	-2.15	345	364	-5.30	244
RA27	HRA	ES2028057010	4/08/2020	7.04	7.35	-4.31	1460	1460	0.00	852
WMLP277	HRA	ES2028057011	4/08/2020	7.20	7.33	-1.79	1315	1320	-0.38	766
WMLP278	HRA	ES2028057012	4/08/2020	7.19	7.29	-1.38	870	718	19.17	544
WMLP279	HRA	ES2028057013	4/08/2020	6.80	7.05	-3.61	860	850	1.17	544
WMLP280	HRA	ES2028057014	4/08/2020	7.00	7.27	-3.78	1296	1150	11.94	688
WMLP336	HRA	ES2028057025	6/08/2020	6.74	6.87	-1.91	529	558	-5.39	326
WMLP337	HRA	ES2028057023	6/08/2020	7.23	7.63	-5.38	2605	2590	0.58	1600
WMLP338	HRA	ES2028057024	6/08/2020	6.84	7.28	-6.23	1774	1830	-3.11	1100

Bore ID	Geology	Laboratory ID	Calcium	Magnesium	Sodium	Potassium	Chloride
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			1	1	1	1	1
ANZECC livestock limits							
Ashton Well	BCA	ES2028057015	20	10	37	2	41
PB1	BCA	ES2028057038	219	108	247	8	274
RM10	BCA	ES2028057039	77	40	182	3	254
T2A	BCA	ES2028057034	68	35	167	2	209
T3A	BCA	ES2028057032	57	54	314	<1	571
T4A	BCA	ES2028057029	47	28	199	<1	284
Т5	BCA	ES2028057016	28	13	99	1	81
WML113C	BCA	ES2028057031	79	33	141	2	230
WML115C	BCA	ES2028057002	4	2	93	<1	25
WMLP308	BCA	ES2028057020	68	44	186	3	263
WMLP311	BCA	ES2028057022	27	18	98	2	110
WMLP320	BCA	ES2028057037	106	55	194	3	263
WMLP323	BCA	ES2028057018	41	25	110	2	82
WMLP326	BCA	ES2028057027	48	25	193	<1	204
WMLP328	BCA	ES2028057036	73	42	150	3	143
YAP016	BCA	ES2028057009	28	18	122	1	101
T2P	СМОВ	ES2028057035	76	37	86	2	207
T3P	СМОВ	ES2028057033	45	42	309	3	387
T4P	СМОВ	ES2028057030	52	37	276	3	318
WML115B	СМОВ	ES2028057001	71	37	438	2	462
WMLP324	СМОВ	ES2028057019	55	32	135	2	150
WMLP325	CMOB	ES2028057021	62	35	199	2	292
WMLP327	СМОВ	ES2028057028	70	38	268	3	295
GM1	Coal	ES2028057008	66	49	273	3	294
WML119	Coal	ES2028057046	32	28	225	3	168
WML120A	Coal	ES2028057042	24	20	72	1	82

Bore ID	Geology	Laboratory ID	Calcium	Magnesium	Sodium	Potassium	Chloride
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			1	1	1	1	1
ANZECC livestock limits							
WML181	Coal	ES2028057047	19	20	493	3	462
WML183	Coal	ES2028057026	115	172	656	8	865
WML261	Coal	ES2028057040	26	29	173	2	202
WML262	Coal	ES2028057048	7	6	681	3	479
WMLP301	Coal	ES2028057045	6	4	728	2	565
WMLP302	Coal	ES2028057041	21	26	141	2	170
WML120B	GCA	ES2028057043	20	13	54	<1	54
WML129	GCA	ES2028057044	22	13	44	2	63
WML239	GCA	ES2028057004	39	18	72	1	114
WMLP343	GCA	ES2028057007	40	20	69	<1	72
WMLP346	GCA	ES2028057006	22	13	49	<1	50
WMLP349	GCA	ES2028057005	40	24	114	<1	192
WMLP358	GCA	ES2028057003	27	13	25	<1	54
RA27	HRA	ES2028057010	40	34	221	<1	273
WMLP277	HRA	ES2028057011	39	26	201	<1	231
WMLP278	HRA	ES2028057012	29	16	134	<1	60
WMLP279	HRA	ES2028057013	46	21	99	<1	118
WMLP280	HRA	ES2028057014	47	29	186	<1	168
WMLP336	HRA	ES2028057025	31	16	59	1	75
WMLP337	HRA	ES2028057023	94	121	333	5	665
WMLP338	HRA	ES2028057024	81	56	237	<1	425

Bore ID	Geology	Laboratory ID	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Total Alkalinity	Sulfate as SO4
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			1	1	1	1	1
ANZECC livestock limits							1000
Ashton Well	BCA	ES2028057015	<1	<1	79	79	38
PB1	BCA	ES2028057038	<1	<1	326	326	984
RM10	BCA	ES2028057039	<1	<1	164	164	324
T2A	BCA	ES2028057034	<1	<1	158	158	304
T3A	BCA	ES2028057032	<1	<1	196	196	129
T4A	BCA	ES2028057029	<1	<1	224	224	112
T5	BCA	ES2028057016	<1	<1	95	95	106
WML113C	BCA	ES2028057031	<1	<1	141	141	221
WML115C	BCA	ES2028057002	<1	<1	153	153	32
WMLP308	BCA	ES2028057020	<1	<1	230	230	229
WMLP311	BCA	ES2028057022	<1	<1	119	119	101
WMLP320	BCA	ES2028057037	<1	<1	170	170	461
WMLP323	BCA	ES2028057018	<1	<1	155	155	130
WMLP326	BCA	ES2028057027	<1	<1	272	272	90
WMLP328	BCA	ES2028057036	<1	<1	143	143	400
YAP016	BCA	ES2028057009	<1	<1	127	127	147
T2P	СМОВ	ES2028057035	<1	<1	156	156	139
T3P	СМОВ	ES2028057033	<1	<1	403	403	109
T4P	CMOB	ES2028057030	<1	<1	409	409	110
WML115B	СМОВ	ES2028057001	<1	<1	505	505	294
WMLP324	СМОВ	ES2028057019	<1	<1	170	170	205
WMLP325	СМОВ	ES2028057021	<1	<1	241	241	140
WMLP327	СМОВ	ES2028057028	<1	<1	322	322	59
GM1	Coal	ES2028057008	<1	<1	330	330	139
WML119	Coal	ES2028057046	<1	<1	480	480	<1
WML120A	Coal	ES2028057042	<1	<1	189	189	9

Bore ID	Geology	Laboratory ID	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Total Alkalinity	Sulfate as SO4
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			1	1	1	1	1
ANZECC livestock limits							1000
WML181	Coal	ES2028057047	<1	<1	705	705	<1
WML183	Coal	ES2028057026	<1	<1	1010	1010	397
WML261	Coal	ES2028057040	<1	<1	293	293	39
WML262	Coal	ES2028057048	<1	28	1010	1040	<1
WMLP301	Coal	ES2028057045	<1	2	942	944	9
WMLP302	Coal	ES2028057041	<1	<1	248	248	25
WML120B	GCA	ES2028057043	<1	<1	145	145	9
WML129	GCA	ES2028057044	<1	<1	97	97	26
WML239	GCA	ES2028057004	<1	<1	180	180	16
WMLP343	GCA	ES2028057007	<1	<1	231	231	4
WMLP346	GCA	ES2028057006	<1	<1	153	153	1
WMLP349	GCA	ES2028057005	<1	<1	188	188	27
WMLP358	GCA	ES2028057003	<1	<1	106	106	<1
RA27	HRA	ES2028057010	<1	<1	278	278	110
WMLP277	HRA	ES2028057011	<1	<1	265	265	110
WMLP278	HRA	ES2028057012	<1	<1	240	240	34
WMLP279	HRA	ES2028057013	<1	<1	180	180	83
WMLP280	HRA	ES2028057014	<1	<1	268	268	62
WMLP336	HRA	ES2028057025	<1	<1	156	156	17
WMLP337	HRA	ES2028057023	<1	<1	496	496	118
WMLP338	HRA	ES2028057024	<1	<1	382	382	61

Bore ID	Geology	Laboratory ID	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Zinc
Units			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			0.001	0.0001	0.001	0.001	0.05	0.001	0.001	0.001	0.01	0.005
ANZECC livestock limits			0.5	0.01	1	0.4		0.1		1	0.02	20
Ashton Well	BCA	ES2028057015										
PB1	BCA	ES2028057038										
RM10	BCA	ES2028057039										
T2A	BCA	ES2028057034	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.002	0.002	< 0.01	< 0.005
T3A	BCA	ES2028057032	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.048	0.026	< 0.01	< 0.005
T4A	BCA	ES2028057029	< 0.001	< 0.0001	< 0.001	< 0.001	0.05	< 0.001	0.067	0.004	< 0.01	< 0.005
T5	BCA	ES2028057016	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.003	0.002	< 0.01	< 0.005
WML113C	BCA	ES2028057031	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.003	0.001	< 0.01	0.051
WML115C	BCA	ES2028057002										
WMLP308	BCA	ES2028057020	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.007	0.002	< 0.01	< 0.005
WMLP311	BCA	ES2028057022	< 0.001	< 0.0001	0.006	< 0.001	0.05	< 0.001	0.010	0.010	< 0.01	< 0.005
WMLP320	BCA	ES2028057037										
WMLP323	BCA	ES2028057018	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.004	0.002	< 0.01	< 0.005
WMLP326	BCA	ES2028057027										
WMLP328	BCA	ES2028057036	< 0.001	< 0.0001	< 0.001	< 0.001	0.08	< 0.001	0.003	< 0.001	< 0.01	< 0.005
YAP016	BCA	ES2028057009	< 0.001	< 0.0001	< 0.001	0.001	< 0.05	< 0.001	0.006	0.001	< 0.01	< 0.005
T2P	CMOB	ES2028057035	0.008	< 0.0001	< 0.001	< 0.001	3.61	< 0.001	0.351	0.014	< 0.01	< 0.005
T3P	CMOB	ES2028057033	< 0.001	< 0.0001	< 0.001	< 0.001	0.22	< 0.001	0.034	< 0.001	< 0.01	< 0.005
T4P	CMOB	ES2028057030	< 0.001	< 0.0001	< 0.001	< 0.001	0.21	< 0.001	0.033	< 0.001	< 0.01	< 0.005
WML115B	CMOB	ES2028057001										
WMLP324	CMOB	ES2028057019	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.032	0.003	< 0.01	< 0.005
WMLP325	СМОВ	ES2028057021	< 0.001	< 0.0001	< 0.001	< 0.001	0.80	< 0.001	0.375	0.002	< 0.01	< 0.005
WMLP327	СМОВ	ES2028057028										
GM1	Coal	ES2028057008	0.001	< 0.0001	< 0.001	< 0.001	1.04	< 0.001	0.610	< 0.001	< 0.01	< 0.005

Bore ID	Geology	Laboratory ID	Arsenic	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Zinc
Units			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Reporting (LOR)			0.001	0.0001	0.001	0.001	0.05	0.001	0.001	0.001	0.01	0.005
ANZECC livestock limits			0.5	0.01	1	0.4		0.1		1	0.02	20
WML119	Coal	ES2028057046	< 0.001	< 0.0001	0.018	< 0.001	0.11	< 0.001	0.092	0.009	< 0.01	< 0.005
WML120A	Coal	ES2028057042	< 0.001	< 0.0001	< 0.001	< 0.001	0.66	< 0.001	0.117	0.002	< 0.01	< 0.005
WML181	Coal	ES2028057047	< 0.001	< 0.0001	0.005	< 0.001	< 0.05	< 0.001	0.019	< 0.001	< 0.01	< 0.005
WML183	Coal	ES2028057026	< 0.001	< 0.0001	< 0.001	< 0.001	0.12	< 0.001	0.176	0.006	< 0.01	0.011
WML261	Coal	ES2028057040	< 0.001	< 0.0001	< 0.001	< 0.001	1.09	< 0.001	0.029	0.001	< 0.01	< 0.005
WML262	Coal	ES2028057048	< 0.001	< 0.0001	< 0.001	< 0.001	0.08	< 0.001	0.034	< 0.001	< 0.01	< 0.005
WMLP301	Coal	ES2028057045	< 0.001	< 0.0001	< 0.001	0.015	< 0.05	< 0.001	0.029	0.007	< 0.01	0.016
WMLP302	Coal	ES2028057041	< 0.001	< 0.0001	0.024	< 0.001	1.52	< 0.001	0.026	0.025	< 0.01	< 0.005
WML120B	GCA	ES2028057043	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.011	0.002	< 0.01	< 0.005
WML129	GCA	ES2028057044	0.001	< 0.0001	< 0.001	< 0.001	0.12	< 0.001	0.204	0.001	< 0.01	< 0.005
WML239	GCA	ES2028057004	< 0.001	< 0.0001	< 0.001	< 0.001	0.13	< 0.001	0.028	0.006	< 0.01	< 0.005
WMLP343	GCA	ES2028057007	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.010	0.002	< 0.01	< 0.005
WMLP346	GCA	ES2028057006	< 0.001	< 0.0001	< 0.001	< 0.001	0.10	< 0.001	0.057	< 0.001	< 0.01	< 0.005
WMLP349	GCA	ES2028057005	< 0.001	< 0.0001	< 0.001	0.001	0.56	< 0.001	0.165	0.002	< 0.01	0.010
WMLP358	GCA	ES2028057003	< 0.001	< 0.0001	< 0.001	0.001	< 0.05	< 0.001	0.016	< 0.001	< 0.01	< 0.005
RA27	HRA	ES2028057010	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.008	0.008	< 0.01	< 0.005
WMLP277	HRA	ES2028057011	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.030	0.006	< 0.01	< 0.005
WMLP278	HRA	ES2028057012	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.018	0.004	< 0.01	< 0.005
WMLP279	HRA	ES2028057013	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.008	0.005	< 0.01	< 0.005
WMLP280	HRA	ES2028057014	< 0.001	< 0.0001	0.056	< 0.001	0.73	< 0.001	0.051	0.107	< 0.01	< 0.005
WMLP336	HRA	ES2028057025	< 0.001	< 0.0001	0.004	< 0.001	0.07	< 0.001	0.010	0.013	< 0.01	< 0.005
WMLP337	HRA	ES2028057023	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.05	< 0.001	0.136	0.002	< 0.01	0.009
WMLP338	HRA	ES2028057024	0.001	< 0.0001	< 0.001	< 0.001	0.83	< 0.001	0.621	0.009	< 0.01	0.008

Bore ID	Geology	Laboratory ID	Turbidity	Total Cyanide	Nitrite + Nitrate as N	Total Kjeldahl Nitrogen as N	Total Nitrogen as N	Total Phosphorous as P	Total Anions	Total Cations	Ionic Balance
Units			NTU	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%
Limit of Reporting (LOR)			0.1	0.004	0.01	0.1	0.1	0.01	0.01	0.01	0.01
ANZECC livestock limits											
Ashton Well	BCA	ES2028057015							3.53	3.48	0.64
PB1	BCA	ES2028057038							34.70	30.80	6.05
RM10	BCA	ES2028057039							17.20	15.10	6.37
T2A	BCA	ES2028057034	0.9	< 0.004	0.59	0.1	0.7	0.03	15.40	13.60	6.19
T3A	BCA	ES2028057032	221	< 0.004	0.98	0.3	1.3	0.23	22.70	20.90	4.04
T4A	BCA	ES2028057029	17.3	< 0.004	0.71	0.1	0.8	0.14	14.80	13.30	5.38
T5	BCA	ES2028057016	11.7	< 0.004	4.11	0.9	5.0	0.03	6.39	6.80	3.10
WML113C	BCA	ES2028057031	145	< 0.004	5.12	2.0	7.1	0.56	13.90	12.80	3.98
WML115C	BCA	ES2028057002							4.43	4.41	0.21
WMLP308	BCA	ES2028057020	0.8	< 0.004	1.14	0.2	1.3	0.01	16.80	15.20	5.01
WMLP311	BCA	ES2028057022	4.4	< 0.004	1.68	0.4	2.1	0.03	7.58	7.14	2.99
WMLP320	BCA	ES2028057037				****			20.40	18.30	5.37
WMLP323	BCA	ES2028057018	2.6	< 0.004	2.76	0.7	3.5	0.03	8.12	8.94	4.82
WMLP326	BCA	ES2028057027				****			13.10	12.80	0.83
WMLP328	BCA	ES2028057036	9.7	< 0.004	1.82	0.4	2.2	0.03	15.20	13.70	5.25
YAP016	BCA	ES2028057009	4.6	< 0.004	1.61	0.2	1.8	< 0.01	8.45	8.21	1.42
T2P	CMOB	ES2028057035	8.7	< 0.004	0.02	<0.1	< 0.1	0.02	11.80	10.60	5.43
T3P	CMOB	ES2028057033	2.8	< 0.004	0.01	0.5	0.5	0.03	21.20	19.20	4.99
T4P	СМОВ	ES2028057030	6.1	< 0.004	0.02	0.4	0.4	0.02	19.40	17.70	4.60
WML115B	CMOB	ES2028057001							29.20	25.70	6.47
WMLP324	CMOB	ES2028057019	15.1	< 0.004	1.14	0.3	1.4	0.02	11.90	11.30	2.56
WMLP325	CMOB	ES2028057021	40.5	< 0.004	0.02	0.2	0.2	0.08	16.00	14.70	4.19
WMLP327	CMOB	ES2028057028							16.00	18.40	6.90

Bore ID	Geology	Laboratory ID	Turbidity	Total Cyanide	Nitrite + Nitrate as N	Total Kjeldahl Nitrogen as N	Total Nitrogen as N	Total Phosphorous as P	Total Anions	Total Cations	Ionic Balance
Units			NTU	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L	meq/L	%
Limit of Reporting (LOR)			0.1	0.004	0.01	0.1	0.1	0.01	0.01	0.01	0.01
ANZECC livestock limits											
GM1	Coal	ES2028057008	561	< 0.004	0.04	0.3	0.3	1.20	17.80	19.30	4.04
WML119	Coal	ES2028057046	117	< 0.004	< 0.01	1.3	1.3	0.22	14.30	13.80	2.01
WML120A	Coal	ES2028057042	49.9	< 0.004	0.02	0.2	0.2	0.07	6.28	6.00	2.24
WML181	Coal	ES2028057047	78.8	< 0.004	< 0.01	1.1	1.1	0.16	27.10	24.10	5.86
WML183	Coal	ES2028057026	6420	< 0.004	0.02	4.2	4.2	1.06	52.80	48.60	4.15
WML261	Coal	ES2028057040	27	< 0.004	0.01	0.4	0.4	0.05	12.40	11.30	4.67
WML262	Coal	ES2028057048	56.8	< 0.004	0.03	1.4	1.4	0.61	34.30	30.50	5.78
WMLP301	Coal	ES2028057045	1540	< 0.004	0.01	4.1	4.1	1.88	35.00	32.30	3.92
WMLP302	Coal	ES2028057041	1.4	< 0.004	0.01	0.8	0.8	0.04	10.30	9.37	4.58
WML120B	GCA	ES2028057043	1.7	< 0.004	0.06	< 0.1	< 0.1	0.09	4.61	4.42	2.12
WML129	GCA	ES2028057044	1	< 0.004	1.33	0.3	1.6	0.05	4.26	4.13	1.48
WML239	GCA	ES2028057004	53.2	< 0.004	0.02	< 0.1	< 0.1	0.08	7.14	6.58	4.08
WMLP343	GCA	ES2028057007	0.4	< 0.004	0.06	0.1	0.2	0.04	6.73	6.64	0.64
WMLP346	GCA	ES2028057006	0.6	< 0.004	0.02	0.1	0.1	0.04	4.49	4.30	2.15
WMLP349	GCA	ES2028057005	3.8	< 0.004	0.02	< 0.1	<0.1	0.06	9.73	8.93	4.31
WMLP358	GCA	ES2028057003	<0.1	< 0.004	0.04	0.1	0.1	0.06	3.64	3.50	1.91
RA27	HRA	ES2028057010	10.4	< 0.004	0.67	0.2	0.9	0.26	15.50	14.40	3.80
WMLP277	HRA	ES2028057011	36	< 0.004	0.41	0.1	0.5	0.22	14.10	12.80	4.72
WMLP278	HRA	ES2028057012	4.5	< 0.004	1.52	0.3	1.8	0.07	7.20	8.59	8.85
WMLP279	HRA	ES2028057013	23.6	< 0.004	1.93	0.3	2.2	0.09	8.65	8.33	1.90
WMLP280	HRA	ES2028057014	6.8	< 0.004	0.30	0.2	0.5	0.12	11.40	12.80	5.94
WMLP336	HRA	ES2028057025	3.3	< 0.004	0.58	0.2	8.0	0.08	5.59	5.46	1.18
WMLP337	HRA	ES2028057023	2940	< 0.004	0.03	2.0	2.0	2.02	31.10	29.30	3.09
WMLP338	HRA	ES2028057024	114	< 0.004	0.21	0.2	0.4	0.11	20.90	19.00	4.85

_	,		,	,		,	,	, , ,
RM10		Adio II one II o	Man Ha (Ge) one,	/ \$	1265	Secured Conductor	/® /	886
a a		/30		6.96		25°C (480), marce	® 190% (180%) 1265	886 886 886 886 886 886 886 886 886 886
No No	946 9046 95 15/01/2020	(p)	1	Ha				
las la sam	/o/n	On the second) anno		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N. S.	1000
Clien		/ Ha						
	15/01/2020	6.96		6.96	1265		1265	886
T2A WML113C	15/01/2020	7.12		7.12	1034		1034	718
WML120B	13/01/2020	6.73		6.73	472		472	319
WML129 WML239	13/01/2020 14/01/2020	6.92 6.83		6.92 6.83	341 673		341 673	227 459
WMLP279	15/01/2020	6.82		6.82	1105		1105	773
WMLP280 WMLP311	15/01/2020	6.86		6.86	1423		1423	1004
WMLP323	14/01/2020	7.03		7.03	1196		1196	832
WMLP328 WMLP336	13/01/2020	6.86		6.86	601		601	409
WMLP337	13/01/2020	7.07		7.07	2945		2945	2220
WMLP343 WMLP346	14/01/2020 14/01/2020	6.82 6.91		6.82 6.91	726 415		726 415	497 278
WMLP349	14/01/2020	6.48		6.48	895		895	619
WMLP358 YAP016	14/01/2020 13/01/2020	7.07 6.96		7.07 6.96	364 1272		364 1272	243 895
ASHTON WELL	13/01/2020	0.90		0.90	1272		1272	695
GM1	3/02/2020				1936		1936	
PB1 RA18								
RA27								
RM02 RM10	4/02/2020	6.95		6.95	1370		1370	965
RSGM1	, 12 2020	2.00		2.30				
T2A T2P	10/02/2020	7.15	7.82	7.82	1135	1150	1150	794
T3A	10/02/2020	7.01		7.01	2284		2284	1697
T3P T4A	10/02/2020 10/02/2020	7.42	7.67	7.42 7.67	1708	1.450	1708 1450	1227 1021
T4P	10/02/2020	7.06 7.47	7.86	7.86	1443 1774	1450 1790	1790	1276
T5	40/00/0000							
WML113C WML115B	10/02/2020 3/02/2020							
WML115C								
WML119 WML120A	6/02/2020 5/02/2020	7.51 6.87	7.91 7.58	7.91 7.58	1661 735	1600 746	1600 746	1188 503
WML120B	5/02/2020	6.68	7.36	7.36	465	476	476	313
WML129 WML181	6/02/2020 6/02/2020	7.06 7.38	7.47 8.05	7.47 8.05	385 2858	393 3100	393 3100	258 2172
WML183	6/02/2020	6.84	7.61	7.61	4132	4240	4240	3205
WML239 WML261	7/02/2020 5/02/2020	6.82 6.93	7.49 7.42	7.49 7.42	688 1065	709 1020	709 1020	470 746
WML262	9/02/2020	8.01	8.3	8.30	2731	2810	2810	2065
WMLP277	4/02/2020	7.01		7.01	1341		1341	945
WMLP278 WMLP279	4/02/2020 4/02/2020	7.05 6.87	7.41	7.05 7.41	1280 1030	1050	1280 1050	900 725
WMLP280	4/02/2020	6.79	7.47	7.47	1394	1390	1390	983
WMLP301 WMLP302	6/02/2020 5/02/2020	7.75 6.48	8.31 7.23	8.31 7.23	2821 954	2910 987	2910 987	2140 662
WMLP308	3/02/2020	7.17		7.17	1370		1370	966
WMLP311 WMLP320								
WMLP323	3/02/2020	7.07	7.57	7.57	1186	1200	1200	831
WMLP324 WMLP325	3/02/2020 3/02/2020	6.84 7.36	7.51	7.51 7.36	1292 2160	1310	1310 2160	907 1606
WMLP326	10/02/2020	7.06		7.06	1439		1439	1018
WMLP327 WMLP328	10/02/2020	6.81		6.81	1917		1917	1388
WMLP336	5/02/2020	6.70	7.27	7.27	594	617	617	404
WMLP337	5/02/2020	7.00	7.66	7.66	2882	2960	2960	2165
WMLP338 WMLP343	5/02/2020 7/02/2020	6.87 6.86	7.58	6.87 7.58	1811 714	733	1811 733	1305 488
WMLP346	7/02/2020	6.87	7.53	7.53	428	436	436	287
WMLP349 WMLP358	7/02/2020 7/02/2020	6.62 6.72	7.29 7.19	7.29 7.19	868 359	877 366	877 366	600 240
YAP016	3/02/2020	7.14	7.53	7.53	1256	1270	1270	881
RM10 T2A								
WML113C	4/03/2020	7.35		7.35	1196		1196	839
WML120B WML129	2/03/2020 2/03/2020	6.65 7.01		6.65 7.01	476 374		476 374	320 250
WML239	3/03/2020	6.87		6.87	713		713	488
WMLP279 WMLP280	4/03/2020 4/03/2020	6.97 6.92		6.97 6.92	1061 1263		1061 1263	741 888
WMLP311	7/03/2020	0.92		0.32	1203		1203	000
WMLP323	3/03/2020	7.41		7.41	1281		1281	901
WMLP328 WMLP336	2/03/2020	6.99		6.99	582		582	394
WMLP337	2/03/2020	7.06		7.06	2797		2797	2122
WMLP343 WMLP346	3/03/2020 3/03/2020	6.83 6.82		6.83 6.82	708 520		708 520	484 351
WMLP349	3/03/2020	6.76		6.76	864		864	590
WMLP358 YAP016	3/03/2020 2/03/2020	6.88 6.98		6.88	359 1231		359 1231	240 864
		2.00		2.50			,	

_								
RM10								
T2A WML113C	3/04/2020	7.15		7.15	1234		1234	867
WML120B	1/04/2020	6.98		6.98	461		461	310
WML129	1/04/2020	6.90		6.90	372		372	249
WML239	2/04/2020	6.91		6.91	708		708	484
WMLP279	3/04/2020	6.98		6.98	1040		1040	722
WMLP280	3/04/2020	6.85		6.85	1302		1302	916
WMLP311				0.00				
WMLP323	2/04/2020	7.10		7.10	1300		1300	912
WMLP328				0.00				
WMLP336	1/04/2020	7.01		7.01	590		590	401
WMLP337	1/04/2020	7.21		7.21	2758		2758	2087
WMLP343 WMLP346	2/04/2020 2/04/2020	6.80 6.82		6.80 6.82	690 533		690 533	471 360
WMLP349	2/04/2020	6.52		6.52	868		868	600
WMLP358	2/04/2020	6.43		6.43	357		357	239
YAP016	1/04/2020	7.24		7.24	1227		1227	861
ASHTON WELL	8/05/2020	7.19		7.19	1601		1601	1143
GM1	1/05/2020			0.00	1962		1962	
PB1	6/05/2020			0.00	3680		3680	
RA18	6/05/2020			0.00			0	
RA27	6/05/2020	7.14		7.14	1424		1424	1007
RM02	0/05/0000	0.00		0.00	4000	4040	0	040.4
RM10 RSGM1	6/05/2020	6.98	6.6	6.60	1200	1210	1210 0	842.4
T2A				0.00			0	
T2P	7/05/2020	6.72	6.87	6.87	1045	1050	1050	727.1
T3A	7/05/2020	7.04	0.01	7.04	2162	1000	2162	727.1
T3P	7/05/2020	7.50		7.50	1640		1640	1600
T4A	7/05/2020	7.02	7.02	7.02	1413	1420	1420	1600
T4P	7/05/2020	7.48	7.44	7.44	1740	1770	1770	997.8
T5				0.00			0	
WML113C	7/05/2020	6.95		6.95	1350		1350	951.8
WML115B				0.00			0	
WML115C WML119	1/05/2020 5/05/2020	7.02	7.53	7.02	485.7	1650	485.7 1650	327 1172
WML120A	4/05/2020	7.44 6.75	6.98	7.53 6.98	1640 680.9	663	663	464
WML120A WML120B	4/05/2020	6.72	6.88	6.88	465.3	470	470	313
WML129	5/05/2020	7.04	7.02	7.02	407.8	418	418	272.4
WML181	5/05/2020	7.62	7.66	7.66	2360	2430	2430	1759
WML183	5/05/2020	6.88	6.98	6.98	4218	4440	4440	3275
WML239	1/05/2020	6.88	6.89	6.89	686	713	713	469
WML261	4/05/2020	6.65	6.83	6.83	900	877	877	622.5
WML262	5/05/2020	8.08	8.13	8.13	2870	2980	2980	2161
WMLP277	6/05/2020	7.08		7.08	1296		1296	914.5
WMLP278	6/05/2020	7.10	0.05	7.10	1004	000	1004	700.5
WMLP279 WMLP280	6/05/2020 6/05/2020	7.00 6.95	6.85 6.93	6.85 6.93	977.4 1420	992 1420	992 1420	677 1005
WMLP280 WMI P301	5/05/2020	6.95 7.88	6.93 8.01	6.93 8.01	1420 2970	1420 3140	1420 3140	2239
WMLP301	4/05/2020	6.49	6.7	6.70	1056	1060	1060	740.5
WMLP302	8/05/2020	7.05	5.7	7.05	1591	. 500	1591	1135
WMLP311	8/05/2020	7.01	6.92	6.92	1279	1280	1280	896.6
WMLP320	6/05/2020	7.12		7.12	1254		1254	882.2
WMLP323	8/05/2020	6.72	6.64	6.64	1585	1600	1600	1137
WMLP324	8/05/2020	6.81	6.85	6.85	1534	1550	1550	1091
WMLP325	8/05/2020	7.43		7.43	2251		2251	1675
WMLP326	7/05/2020	7.24		7.24	1382		1382	975.1
WMLP327	7/05/2020	6.94		6.94	1916	4500	1916	1388
WMLP328 WMLP336	6/05/2020 4/05/2020	7.09 6.70	7.1 6.63	7.10 6.63	1486 585	1500 602	1500 602	1056 397.4
WMLP336 WMLP337	4/05/2020 4/05/2020	6.70 7.28	7.23	7.23	585 2727	2810	602 2810	2060
WMLP338	4/05/2020	6.88	1.23	6.88	2027	2010	2027	1476
WMLP343	1/05/2020	6.96	6.98	6.98	662.6	690	690	451.1
WMLP346	1/05/2020	6.85	6.84	6.84	524	546	546	354.1
WMLP349	1/05/2020	6.70	6.61	6.61	874.2	907	907	604.3
WMLP358	1/05/2020	6.73	6.52	6.52	352	365	365	234
YAP016	1/05/2020	7.06	6.98	6.98	1346	1360	1360	946

T2A 3096/2000 September									
WML1190	RM10	3/06/2020	7.24		7.24	1205		1205	847
WML120B 1106/2020 6.80 6.80 450.8 450.8 450.8 302.4 WML120B 2106/2020 7.05 7.05 7.05 771.6 771.6 1005 702.2 WMLP20B 306/2020 7.04 7.14 1.05 1005 702.2 WMLP20B 306/2020 7.05 7.05 7.05 1380 1380 956.5 WMLP211 206/2020 6.67 6.67 1568 1588 1588 1119 206/2020 7.08 7.05 1.05 7.05 1380 1380 956.5 WMLP211 206/2020 6.67 6.67 1568 1588 1588 1119 WMLP223 206/2020 6.67 6.67 1568 1588 1588 1119 WMLP23B 106/2020 7.08 7.06 1.06 70.2 2755 2255 2255 2255 2255 2255 2255 22	T2A	3/06/2020							
WMLP29 3069202 7.05 7.05 471.6 471.6 318.5 WMLP279 3069202 7.14 7.14 1005 1005 702.2 WMLP28 3069202 7.05 7.05 1380 1380 98.6 WMLP211 2069202 7.05 7.05 17.05 17.88 1788 1270 WMLP28 3069202 7.05 7.05 17.05 17.05 1880 1380 98.6 WMLP23 3069202 7.08 7.08 16.2 16.2 16.12 11.54 15.0 WMLP23 3069202 7.08 7.08 16.2 16.2 16.12 11.54 15.0 WMLP23 3069202 7.08 7.08 16.2 16.2 16.12 11.54 15.0 WMLP23 1069202 7.02 7.02 6.76 6.76 6.77 15.0 WMLP23 1069202 7.02 7.02 66.17 66.17 45.3 WMLP24 2.069202 6.80 6.80 6.90 50.2 1 502.1 340.0 WMLP24 2.069202 6.80 6.82 6.82 902.5 902.5 902.5 WMLP24 2.069202 6.82 6.82 50.0 50.0 502.1 502.1 340.0 WMLP24 2.069202 6.82 6.82 902.5 902.5 902.5 WMLP24 2.069202 6.80 6.82 18.2 902.5 902.5 902.5 WMLP24 1.069202 7.03 7.03 1380 1380 973.5 FRM10 3077202 6.82 6.82 434.6 434.6 281.7 WML129 1.077202 6.82 6.82 434.6 444.6 281.7 WMLP24 1.077202 6.81 6.81 6.81 6.83 6.83 94.0 WMLP279 3077202 6.86 6.86 6.86 947.4 WMLP279 3077202 6.86 6.86 6.86 17.8 WMLP279 3077202 6.86 6.86 6.86 17.8 WMLP279 3077202 6.86 6.86 6.86 17.8 WMLP28 3077202 6.80 6.87 6.87 6.87 1388 1388 958.6 WMLP28 3077202 6.86 6.86 6.86 17.98 17.98 12.90 WMLP28 3077202 6.80 6.87 6.87 6.87 1388 1388 958.6 WMLP28 3077202 6.80 6.80 6.80 476.2 476.2 274.2 2075 WMLP28 3077202 6.80 6.80 6.80 476.2 476.2 274.2 2075 WMLP28 3077202 6.80 6.80 6.80 476.2 476.2 274.2 2075 WMLP28 3077202 6.80 6.80 6.80 476.2 476.2 20.0 WMLP31 1.070200 7.18 7.13 7.13 1313 1370 130 130 130 130 130 130 130 130 130 13	WML113C	3/06/2020							
WML239 20692020 6.92 6.92 702 702 478.1 WMLP280 30692020 7.05 7.05 1380 1380 995.6 WMLP281 20692020 7.05 7.05 1380 1380 995.6 WMLP281 20692020 6.67 6.67 1598 1598 1198 WMLP283 10692020 7.08 7.08 7.08 1612 1612 1154 WMLP283 10692020 6.76 6.67 6.69 99 609 412.6 WMLP283 10692020 7.08 7.08 7.08 1612 1612 1154 WMLP283 10692020 7.08 7.08 7.08 1612 1612 1154 WMLP283 10692020 7.05 7.15 7.15 2795 2295 2220 WMLP283 20692020 7.02 7.02 7.02 661.7 661.7 453.2 WMLP283 20692020 7.02 7.02 7.02 661.7 661.7 453.2 WMLP283 20692020 6.78 6.78 6.78 635.4 536.4 528.4 5	WML120B	1/06/2020	6.80		6.80	450.8		450.8	302.4
WMLP279 3/06/2020 7.05 7.05 1380 1380 95.65 WMLP211 2/06/2020 7.05 7.05 1768 1768 1768 1270 WMLP232 3/06/2020 7.05 7.05 1768 1768 1588 1188 1270 WMLP232 3/06/2020 7.08 7.08 1612 1612 1612 1515 1612 1612 1515 1612 1612					7.05				
WMLP280 3/06/2020 7.05 7.05 1360 1380 958.5 WMLP212 2/06/2020 6.67 6.67 1568 1568 1198 WMLP23 2/06/2020 6.67 6.67 1568 1568 1198 WMLP23 3/06/2020 6.76 6.76 609 609 412.5 WMLP343 1/06/2020 7.05 7.05 7.05 2736 609 609 412.5 WMLP343 2/06/2020 7.05 7.05 661.7 661.7 453.2 WMLP343 2/06/2020 7.05 7.05 661.7 661.7 453.2 WMLP343 2/06/2020 7.05 7.05 661.7 62.1 453.2 WMLP343 2/06/2020 7.05 7.05 661.7 661.7 453.2 WMLP343 2/06/2020 6.80 6.82 6.82 902.5 902.5 602.4 WMLP348 2/06/2020 6.78 6.78 354.5 35									
WMLP31 2069202 7.05 7.05 1768 1768 1278 WMLP32 3069202 7.08 7.08 162 1612 1612 1558 WMLP33 1069202 7.08 7.08 1612 1612 1558 WMLP33 1069202 7.15 7.15 7.15 2795 2795 2205 WMLP34 2069202 7.02 7.02 7.02 6617 6617 632 1320 WMLP34 2069202 6.0 6.0 6.0 502.1 502.1 340.0 WMLP34 2069202 6.0 6.0 6.0 502.1 502.1 340.0 WMLP34 2069202 7.03 7.03 7.03 1380 1380 9.73.5 WMLP34 2069202 7.03 7.03 7.03 1380 1380 9.73.5 WMLP34 2069202 6.0 6.0 6.0 502.1 155 150.1 340.0 WMLP34 2069202 6.0 6.0 6.0 502.1 155 150.1 340.0 WMLP34 2069202 6.0 6.0 6.0 502.1 155 150.1 340.0 WMLP34 2069202 6.0 6.0 6.0 6.0 502.1 155 150.0 1380 973.5 WML1208 1070202 6.0 6.0 6.0 6.0 6.0 502.1 155 150.0 1380 973.5 WML1208 1070202 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0									-
WMLP232 20602020 6.67 6.67 1568 1568 1568 1119 WMLP236 30602020 7.08 7.06 6.67 6.69 609 609 412.6 WMLP331 10602020 7.02 7.02 7.02 661.7 681.7 453.2 WMLP343 20602020 7.02 7.02 7.02 661.7 681.7 453.2 WMLP343 20602020 7.02 7.02 6.50 502.1 502.1 30.0 WMLP349 20602020 6.82 6.82 6.82 902.5 902.5 82.2 WMLP349 20602020 7.03 7.03 130.0 130.0 973.5 WMLP349 20602020 7.02 7.02 7.03 130.0 130.0 973.5 WMLP349 20602020 7.02 7.03 7.03 130.0 130.0 973.5 WMLP349 10702020 6.82 6.82 434.6 434.6 291.7 WML1208 10702020 6.82 6.82 434.6 434.6 291.7 WML1208 10702020 6.81 6.81 6.81 6.85 3 665.3 435.1 WMLP279 30702020 6.81 6.81 6.81 6.85 3 665.3 435.1 WMLP279 30702020 6.86 6.86 6.86 1798 1798 1290 WMLP311 2070200 6.86 6.86 6.86 1798 1798 1290 WMLP328 30702020 7.04 7.04 1307 1307 920.1 WMLP311 2070200 6.86 6.86 6.86 1798 1798 1290 WMLP328 30702020 7.10 7.10 1605 1605 1406 1408 1408 1408 1408 1408 1408 1408 1408					7.05			1360	
WMLP283 3006/2020 7.08 7.08 1612 1612 1616 17 453.2 WMLP283 1006/2020 7.15 7.15 2.795 2795 2720 WMLP283 1006/2020 7.02 7.02 661.7 661.7 453.2 WMLP284 2006/2020 6.80 6.90 502.1 502.1 502.1 343.6 WMLP284 2006/2020 6.80 6.90 502.1 502.1 502.1 343.6 WMLP284 2006/2020 6.78 6.78 334.5 33									
WMLP38									
WMLP343									
WMLP446 206/2020 6.90 6.90 6.90 6.90 502.1 502.1 502.1 452.2 WMLP449 206/2020 6.82 6.82 902.5 902.5 902.5 624 WMLP449 206/2020 6.78 6.78 354.5									
WMLP469									
WMLPA98 206/2020 6.82 6.82 902.5 902.5 902.5 238.4									
WMLP368 0.007/2020									
NAPO16									
RM10									
WML1130									
WML131C 307/2020 6.82 6.82 434.6 434.6 29.17 WML129 1/07/2020 6.86 6.96 6.96 474.2 474.2 319.2 WML293 1/07/2020 6.96 6.96 6.98 474.2 474.2 319.2 WML293 3/07/2020 6.98 6.99 9.40 9.40 652.2 WMLP293 3/07/2020 6.86 6.86 6.86 1798 1798 1290 WMLP311 2/07/2020 6.86 6.86 6.86 1798 1798 1290 WMLP313 2/07/2020 6.86 6.86 6.86 1798 1798 1290 WMLP323 3/07/2020 7.10 7.10 1805 1805 1805 WMLP328 3/07/2020 7.10 7.10 1805 1805 1805 WMLP336 1/07/2020 7.18 7.18 7.18 2742 2742 2742 2004 WMLP337 1/07/2020 7.18 7.18 2742 2742 2742 2004 WMLP343 2/07/2020 6.86 6.86 6.88 581.5 581.5 396.1 398.4 199.2			7.02		7.02	1100		1100	005.0
WML129B 1/07/2020 6.82 6.82 434.6 474.2 474.2 319.2 WML239 1/07/2020 6.96 6.96 6.96 474.2 474.2 319.2 WML239 2/07/2020 6.96 6.98 6.98 940 940 653.3 635.3 635.3 WMLP279 3/07/2020 7.04 7.04 1307 1307 920.1 WMLP313 2/07/2020 6.68 6.86 6.86 1798 1798 1290 WMLP323 2/07/2020 6.67 6.67 1368 1368 959.6 WMLP323 2/07/2020 6.67 6.67 1368 1368 959.6 WMLP323 3/07/2020 7.10 7.10 1605 1605 1146 WMLP336 1/07/2020 6.68 6.86 6.88 581.5 581.5 396.1 WMLP337 1/07/2020 7.18 7.18 7.18 2742 2742 2075 WMLP337 1/07/2020 6.88 6.88 581.5 581.5 396.1 WMLP337 1/07/2020 6.80 6.80 4.80 597.8 597.8 957.8 40.2 WMLP343 2/07/2020 6.80 6.80 4.80 476.2 476.2 20.7 WMLP343 2/07/2020 6.80 6.80 476.2 476.2 20.7 WMLP346 2/07/2020 6.96 6.60 6.60 4.83 4.84 5.2 WMLP349 2/07/2020 6.95 6.80 6.80 476.2 476.2 20.7 WMLP358 2/07/2020 6.95 6.96 6.90 4.80 438.2 5 582.5 576.3 WMLP349 2/07/2020 6.96 6.90 6.90 438.2 5 582.5 582.5 582.5 582.4 6 224.6 215.8 WMLP349 2/07/2020 6.96 6.98 6.99 1381 1381 97.3 2 Ashron well 5/08/2020 7.50 7.5 7.50 354.6 349 349 236.5 GM1 04/08/2020 7.11 7.43 7.43 19.08 1850 1850 1850 1850 1850 1850 1850 18									
WML129 107/2020 6.96 6.96 474.2 474.2 319.2 WML239 207/2020 6.81 6.81 6.81 635.3 635.3 433.1 WMLP279 3070/2020 6.98 6.99 940 940 652.2 WMLP313 207/2020 6.69 6.98 6.98 940 940 652.2 WMLP313 1207/2020 6.66 6.66 6.66 1798 1798 1798 1290 WMLP323 307/2020 7.10 7.10 1505 1505 1505 1505 WMLP323 307/2020 7.10 7.10 1505 1505 1505 1505 WMLP323 307/2020 7.10 7.10 1505 1505 1505 1505 WMLP336 1/07/2020 6.68 6.68 5.68 581.5 581.5 396.1 WMLP337 207/2020 6.684 6.68 581.5 581.5 396.1 WMLP337 207/2020 6.680 6.68 581.5 597.8 597.8 406.7 WMLP343 207/2020 6.680 6.60 476.2 476.2 323.4 WMLP349 207/2020 6.60 6.60 6.60 476.2 476.2 323.4 WMLP349 207/2020 6.69 6.52 6.52 324.6 324.6 215.8 WMLP349 207/2020 6.98 6.98 1381 1381 1381 973.8 Ashton well 5/08/2020 7.50 7.5 7.5 7.50 354.6 349 349 236.5 GMI 0408/2020 7.11 7.43 7.43 1909 1850 1850 1090 PB1 10/08/2020 7.20 7.66 7.66 7.66 2750 2610 2610 2606 RA27 408/2020 7.04 7.35 7.35 1460 1460 1460 1460 1460 1470 1008/2020 7.04 7.35 7.35 1460 1460 1460 1460 1470 1774 7708/2020 6.98 6.82 6.82 6.81 4147 1520 1520 1001 173 7708/2020 6.98 6.82 6.82 6.81 1417 1520 1520 1001 173 7708/2020 6.92 6.95 6.82 6.86 1088 1080 1090 665 134 708/2020 7.04 7.35 7.35 1460 1460 1460 812 174 708/2020 7.04 7.35 7.35 1460 1400 1400 1008/2020 7.04 7.35 7.35 1460 1400 1400 1400 1400 1400 1400 1400			6.82		6.82	434.6		434.6	201 7
WML239									
WMLP289 3/07/2020 6.98 6.98 9.40 9.40 6.52 WMLP280 3/07/2020 7.04 7.04 1307 1307 920.1 1307 920.1 WMLP281 2/07/2020 6.86 6.86 6.86 1799 1799 1290 WMLP313 2/07/2020 7.10 7.10 1605 1605 1605 1146 WMLP328 3/07/2020 7.10 7.10 1605 1605 1146 WMLP328 3/07/2020 7.18 7.18 2742 2742 2742 2075 WMLP334 2/07/2020 6.86 6.86 6.88 6.81.5 581.5 981.5 981.5 WMLP337 1/07/2020 6.84 6.84 6.84 6.97.8 597.8 406.7 WMLP343 2/07/2020 6.80 6.60 6.60 832.5 832.5 578.6 WMLP349 2/07/2020 6.60 6.60 6.80 6.80 476.2 324.6 324.									
WMLP280									
WMLP311 20/7/2020 6.86 6.86 1798 1798 1798 1290 WMLP328 20/7/2020 6.67 6.67 1368 1368 959.6 WMLP328 30/7/2020 7.10 7.10 1005 1605 1146 WMLP337 10/7/2020 7.18 7.18 2742 27									
WMLP323 2/07/2020 6.67 6.67 1368 1368 959.6 WMLP336 1/07/2020 7.10 7.10 1505 1605 1146 WMLP336 1/07/2020 6.68 6.68 6.68 551.5 581.5 396.1 WMLP337 1/07/2020 6.68 6.68 6.68 551.5 581.5 396.1 WMLP343 2/07/2020 6.68 6.68 581.5 581.5 396.1 WMLP346 2/07/2020 6.69 6.80 6.80 476.2 476.2 320.4 WMLP348 2/07/2020 6.60 6.60 832.5 832.5 578.6 WMLP349 2/07/2020 6.50 6.60 6.60 832.5 832.5 578.6 WMLP349 2/07/2020 6.50 6.80 6.80 476.2 324.6 324.6 215.8 YAPO16 1/07/2020 6.59 6.98 6.98 1381 1381 973.8 Ashtonwell 5/08/2020 7.50 7.5 7.50 354.6 349 349 236.5 WMLP349 15/08/2020 7.20 7.66 7.66 2750 2610 2610 2610 2610 2610 2610 2610 261									
WMLP328 3/07/2020 7.10 7.10 1605 1605 1605 1406 WMLP337 1/07/2020 6.688 6.68 6.68 581.5 581.5 396.1 WMLP3337 1/07/2020 7.18 7.18 7.18 2742 2742 2075 WMLP343 2/07/2020 6.84 6.84 6.84 597.8 597.8 406.7 WMLP349 2/07/2020 6.80 6.80 6.80 476.2 476.2 320.4 WMLP349 2/07/2020 6.80 6.80 6.80 476.2 476.2 320.4 WMLP349 2/07/2020 6.80 6.80 6.80 32.5 832.5 578.6 WMLP349 2/07/2020 6.89 6.99 1381 13181 973.8 Ashton well 5/08/2020 7.50 7.5 7.5 7.50 354.6 349 349 236.5 GM1 04/08/2020 7.11 7.43 7.43 1908 1850 1850 1909 PB1 10/08/2020 7.20 7.66 7.66 2750 2610 2610 2600 RA27 4/08/2020 7.04 7.35 7.35 1460 1460 1460 1852 RM10 10/08/2020 6.92 6.82 6.82 6.82 1417 1520 1520 15001 T2A 7/08/2020 6.71 7.13 7.13 7.13 1331 1370 1370 826 T2P 7/08/2020 6.72 6.86 6.82 6.81 1417 1520 1500 1606 T3A 7/08/2020 6.92 7.1 7.10 2154 2080 2080 1260 T3A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 1909 WML136 7/08/2020 7.04 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 6.72 7.89 7.69 7.89 7.89 1310 1320 1320 778 T4A 7/08/2020 7.07 7.26 7.26 1381 1400 1400 812 WML115B 3/08/2020 6.92 7.1 7.10 2154 2080 2080 1260 T3A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 WML115B 3/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 3/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 3/08/2020 6.88 7.15 7.15 2390 2480 2480 1783 WML115B 3/08/2020 6.88 7.15 7.15 7.15 2390 2480 2480 1783 WML115B 3/08/2020 6.88 7.15 7.17 7.15 1250 1250 1200 WML120A 10/08/2020 7.28 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 7.79 7.79 7.72 7.72 1796 1140 1140 646 96 96 96 96 96 96 96 96 96 96 96 96 96									
WMLP336 1/07/2020 6.68 6.68 581.5 581.5 396.1 WMLP343 2/07/2020 6.84 6.84 597.8 597.8 597.8 4067. WMLP343 2/07/2020 6.80 6.80 6.80 476.2 476.2 320.4 WMLP346 2/07/2020 6.80 6.80 6.80 476.2 476.2 320.4 WMLP349 2/07/2020 6.52 6.60 6.60 832.5 832.5 578.8 WMLP349 2/07/2020 6.52 6.52 324.6 324.6 215.8 WMLP349 2/07/2020 6.52 6.52 324.6 334.6 215.8 WMLP368 2/07/2020 6.59 6.98 6.98 1381 1381 973.8 Ashton well 5/08/2020 7.55 7.5 7.50 354.6 349 349 236.5 WMLP361 10/08/2020 7.20 7.66 7.66 2750 2610 2610 2610 2600 RAZ7 4/08/2020 7.20 7.66 7.66 2750 2610 2610 2600 RAZ7 4/08/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 7.11 7.43 7.43 1.19 8 1850 1850 1099 RM10 10/08/2020 7.20 7.66 6.68 6.82 1417 1520 1520 1001 1220 1220 1220 1220 1220									1146
WMLP347 1/07/2020 7.18 7.18 2742 2742 2742 2075 WMLP348 2/07/2020 6.84 6.84 597.8 597.8 406.7 WMLP349 2/07/2020 6.80 6.80 6.80 476.2 476.2 326.2 WMLP349 2/07/2020 6.50 6.60 6.60 832.5 832.5 578.6 WMLP349 2/07/2020 6.98 6.98 1381 1381 973.8 Ashton well 5/08/2020 7.50 7.5 7.5 0.50 354.6 349 349 236.5 GM1 04/08/2020 7.11 7.43 7.43 1908 1850 1809 1809 PB1 10/08/2020 7.20 7.66 7.66 2750 2810 2610 2660 822.7 RM10 10/08/2020 7.20 7.66 7.66 2750 2810 2610 2660 822.7 RM10 10/08/2020 7.04 7.35 7.35 1460 1460 1460 822.7 RM10 10/08/2020 7.04 7.35 7.35 1460 1460 1460 822.7 RM10 10/08/2020 7.04 7.35 7.35 1460 1460 1802 822.7 RM10 10/08/2020 7.07 6.86 6.86 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1088 1090 1090 666 1089 1090 1090 666 1090 1090 1090 1090 1090									
WMLP348 2/07/2020 6.84 6.84 597.8 597.8 406.7 WMLP346 2/07/2020 6.80 6.80 476.2 476.2 320.4 WMLP349 2/07/2020 6.80 6.80 476.2 476.2 320.4 WMLP358 2/07/2020 6.52 6.52 324.6 324.6 215.8 WMLP358 2/07/2020 7.50 7.5 7.50 354.6 324.6 215.8 YAP016 1/07/2020 6.98 6.98 1381 1381 973.8 Ashton well 5/08/2020 7.50 7.5 7.50 354.6 349 349 236.5 GM1 04/08/2020 7.11 7.43 7.43 1908 1850 1850 1090 PB1 1/008/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 7.01 7.37 7.31 3131 1370 1370 826 T2A 7/08/2020 7.11 7.43 7.13 1331 1370 1370 826 T2A 7/08/2020 7.11 7.43 7.13 1331 1370 1370 866 T3A 7/08/2020 6.72 6.86 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 1850 T4A 7/08/2020 7.00 7.26 7.66 1381 1400 1400 812 T4P 7/08/2020 7.00 7.26 7.66 1381 1400 1400 812 T4P 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.07 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.27 7.50 7.50 7.51 342 432 386.7 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 03/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 3/08/2020 6.86 6.97 6.97 130 1710 1250 1250 722 WML10A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML119B 11/08/2020 7.55 8.07 7.72 1170 1250 1250 722 WML120A 10/08/2020 6.85 6.78 6.78 415.5 439 439 258 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1320 WML181 11/08/2020 6.85 6.78 6.78 415.5 439 439 258 WML181 11/08/2020 6.80 7.07 7.07 580 590 590 340 WML239 3/08/2020 6.80 7.07 7.07 580 590 590 340 WML291 11/08/2020 6.85 6.78 6.78 415.5 439 439 258 WML281 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1320 WML281 11/08/2020 7.90 7.22 7.53 7.53 3955 8880 3880 3120 WML281 11/08/2020 7.90 7.27 7.27 127 1266 1150 1150 688 WML281 11/08/2020 7.90 7.20 7.33 7.33 1315 1320 1320 1320 WML281 11/08/2020 6.85 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.9									2075
WMLP346 2/07/2020 6.80 6.80 476.2 476.2 320.4 WMLP349 2/07/2020 6.50 6.60 6.60 832.5 832.5 578.6 WMLP349 2/07/2020 6.52 6.52 324.6 324.6 324.6 12.5 YAPO16 1/07/2020 6.98 6.98 1381 1381 973.8 Ashton well 5/08/2020 7.50 7.5 7.5 7.50 354.6 349 349 236.5 GMH 04/08/2020 7.11 7.43 7.43 1908 1850 1850 10.09 PB1 10/08/2020 7.20 7.66 7.66 7.66 2750 2610 2610 2060 RA27 4/08/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 10.01 T2A 7/08/2020 7.11 7.13 7.13 1331 1370 1370 826 T3A 7/08/2020 7.01 7.6 6.86 6.86 1088 1099 1090 665 T3A 7/08/2020 7.01 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.00 7.26 7.26 188 1400 1200 2080 1260 T3A 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1700 T5 5/08/2020 6.92 7.11 7.13 2.13 130 1370 326 T4A 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 7.07 623 632 456 WML113C 7/08/2020 6.92 6.75 6.75 7.07 623 632 456 WML113C 7/08/2020 6.92 6.75 6.75 7.07 623 632 456 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 3/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 3/08/2020 6.96 6.97 6.99 1310 1320 1320 1780 WML115C 3/08/2020 6.86 7.15 7.15 2390 2480 2480 1783 WML115C 3/08/2020 6.86 7.15 7.15 2390 2480 2480 1783 WML115C 3/08/2020 6.86 7.15 7.15 2390 2480 2480 1783 WML115D 1/08/2020 7.59 6.94 6.94 425.8 439 439 236 WML129 11/08/2020 6.80 7.07 7.07 550 590 590 340 WML129 11/08/2020 6.80 7.07 7.07 550 590 590 340 WML129 11/08/2020 6.80 7.07 7.07 550 590 590 340 WML261 10/08/2020 6.80 7.02 7.53 7.53 3955 3880 3880 3130 380 3130 308/2020 6.80 7.28 7.75 7.53 3955 3880 3880 3150 380 WML261 10/08/2020 6.80 7.02 7.53 7.53 3955 3880 380 380 3150 380 WML261 10/08/2020 6.80 7.02 7.53 7.53 3955 3880 380 380 3150 380 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML262 11/08/2020 7.90 8.31 8.31 2782 2790 2790 2790 2790 2790 2790 2790 279									406.7
WMLP358 2/07/2020 6.52 6.52 324.6 324.6 215.8	WMLP346	2/07/2020	6.80		6.80	476.2		476.2	320.4
YAP016	WMLP349	2/07/2020	6.60		6.60	832.5		832.5	578.6
Ashton well 5/08/2020 7.50 7.5 7.5 7.50 354.6 349 349 236.5 GM1 04/08/2020 7.11 7.43 7.43 1908 1850 1850 1090 PB1 10/08/2020 7.20 7.66 7.66 2750 2610 2610 2610 2606 RA27 4/08/2020 7.04 7.35 7.35 1460 1460 1460 1460 852 RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 1001 T2A 7/08/2020 6.74 7.35 7.35 1460 1460 1460 1460 852 RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 1001 T2A 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 7.33 7.67 7.67 1878 1885 1850 945 T3A 7/08/2020 7.33 7.67 7.67 1878 1885 1850 945 T4A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1700 T5 5/08/2020 6.92 6.75 6.75 6.75 707 623 623 623 455 WML136 3020 6.92 6.76 6.75 707 623 623 455 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 2480 1783 WML115B 3/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.28 7.77 7.72 1770 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML1181 11/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML121B 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML261 10/08/2020 6.80 7.07 7.07 580 590 590 380 WML261 10/08/2020 6.80 7.25 7.53 7.53 3955 3880 3880 3120 WML261 10/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 6.80 7.20 7.53 7.53 3955 3880 3880 3120 WML262 11/08/2020 7.00 7.21 7.53 7.22 1170 1140 1140 646 WML262 11/08/2020 7.00 7.27 7.52 7.22 1296 1150 1150 688 WMLP301 11/08/2020 7.00 7.27 7.27 7.29 7.29 800.2 990 2980 2280 WML264 10/08/2020 7.04 6.94 6.94 6.94 732.5 7.99 7.99 9.00 990 990 990 990 990 990 990 990	WMLP358	2/07/2020	6.52		6.52	324.6		324.6	215.8
GM1 04/08/2020 7.11 7.43 7.43 1908 1850 1850 1990	YAP016	1/07/2020	6.98		6.98	1381		1381	973.8
PB1 10/08/2020 7.20 7.66 7.66 2750 2610 2610 2600 RA27 4/08/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 1001 T2A 7/08/2020 7.11 7.13 7.13 1331 1370 1370 826 T3A 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.03 7.66 7.26 1381 1400 1400 812 T4A 7/08/2020 7.04 7.69 7.69 1730 1710 1710 1700 T5 5/08/2020 6.92 6.75 6.75 6.75 707 623 623 623 456 WML13C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 03/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 865.7 WML119 11/08/2020 7.26 7.26 6.94 6.94 425.8 439 439 258 WML120 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 6.82 6.75 6.75 7.07 580 590 590 340 WML183 6/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 6.85 6.75 6.75 6.75 50 50 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML229 11/08/2020 7.02 7.55 7.53 3955 3880 3880 3820 WML229 11/08/2020 7.09 8.31 8.31 2782 2730 2730 1730 WML229 4/08/2020 7.20 7.53 7.53 3955 3880 3880 3820 WML229 11/08/2020 7.00 7.22 7.55 7.53 7.53 3955 3880 3880 380 3120 WML281 10/08/2020 7.00 7.27 7.28 1072 1140 1140 140 6.84 WML282 11/08/2020 7.00 7.27 7.28 1072 1140 1140 140 6.84 WML282 11/08/2020 7.00 7.27 7.28 1072 1140 1140 140 6.84 WML282 11/08/2020 7.00 7.27 7.27 7.27 1296 1150 1150 688 WMLP302 11/08/2020 7.00 7.27 7.27 7.27 1296 1150 1150 688 WMLP303 5/08/2020 7.00 7.27 7.27 7.27 1296 1150 1150 688 WMLP303 5/08/2020 7.00 7.27 7.27 7.27 1296 1150 1150 688 WMLP303 5/08/2020 7.00 7.27 7.27 7.27 1296 1150 1500 903 WMLP303 5/08/2020 6.86 7.30 7.33 7.33 1315 1320 1320 766 WMLP303 5/08/2020 6.86 6.86 8.81 118 118 1160 1160 694 WMLP303	Ashton well	5/08/2020	7.50	7.5	7.50	354.6	349	349	236.5
RA27 4/08/2020 7.04 7.35 7.35 1460 1460 1460 852 RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 1001 T2A 7/08/2020 7.11 7.13 7.13 1331 1370 1370 826 T2P 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 6.92 7.1 7.10 2154 2080 2080 1266 T3A 7/08/2020 7.33 7.67 7.67 1878 1855 1850 945 T4A 7/08/2020 7.30 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML13C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 671.3 432 432 432 432 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 110/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML121 11/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML181 66/2020 7.20 7.53 7.53 3955 3880 3880 380 3120 WML183 6/08/2020 7.20 7.53 7.53 3955 3880 3880 380 3120 WML291 11/08/2020 6.80 7.28 7.28 7.23 7.53 3955 3880 3880 380 3120 WML291 11/08/2020 6.80 7.29 7.28 7.23 7.53 3955 3880 3880 380 3120 WML291 11/08/2020 6.80 7.29 7.29 7.29 1170 1140 1140 646 WML280 11/08/2020 7.90 8.31 8.31 2782 2730 2730 2730 WMLP277 4/08/2020 7.90 8.31 8.31 2782 2730 2730 2730 WMLP278 4/08/2020 7.90 8.31 8.31 2782 2730 2730 2730 WMLP279 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP30 15/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP30 5/08/2020 7.01 7.27 7.27 1296 1150 1150 688 WMLP30 15/08/2020 7.02 7.03 7.14 7.14 1475 1500 1500 903 WMLP30 11/08/2020 6.86 7.05 8.25 8.25 2990 2980 2980 2920 WMLP30 15/08/2020 7.02 7.03 7.14 7.14 1475 1500 1500 903 WMLP30 15/08/2020 7.04 6.94 6.94 7.32.5 7.49 7.49 504 WMLP30 15/08/2020 7.07 7.07 7.07 7.07 7.07 7.07 7.07	GM1	04/08/2020	7.11	7.43	7.43	1908	1850	1850	1090
RM10 10/08/2020 6.96 6.82 6.82 1417 1520 1520 1001 T2A 7/08/2020 7.11 7.13 7.13 1331 1370 1370 826 T2P 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 6.92 7.1 7.10 2154 2080 2080 1260 T3P 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML113C 7/08/2020 6.96 6.99 6.99 1330 1320 1320 778 WML115B 3/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML181 11/08/202 7.55 8.07 8.07 2238 2210 2210 390 WML183 6/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML293 3/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML277 4/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML278 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.09 8.31 8.31 2782 2730 2730 1730 WMLP279 4/08/2020 7.09 8.31 8.31 2782 2730 2730 1730 WMLP279 4/08/2020 7.09 8.31 8.31 2782 2730 2730 1730 WMLP301 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP302 10/08/2020 6.80 7.02 7.33 7.33 1315 1320 1320 766 WMLP303 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP279 4/08/2020 7.09 7.27 7.27 7.27 1296 1150 1150 688 WMLP303 10/08/2020 6.80 7.02 7.33 7.33 1315 1320 1320 766 WMLP303 11/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP304 10/08/2020 6.86 7.28 7.28 1072 1140 1140 1140 646 WMLP305 10/08/2020 6.86 7.29 7.29 870.2 778 718 718 718 544 WMLP308 5/08/2020 7.09 7.07 7.07 7.07 7.07 7.07 7.07 7.0	PB1	10/08/2020	7.20	7.66	7.66	2750	2610	2610	2060
T2A 7/08/2020 7.11 7.13 7.13 1331 1370 1370 826 T2P 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.02 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 7.69 1730 1710 1710 1700 T5 5/08/2020 6.92 6.75 6.75 707 623 623 623 456 WML13C 7/08/2020 6.96 6.99 6.99 1310 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1838 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML121B 11/08/2020 6.80 7.07 7.07 580 590 590 340 WML128 11/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 7.55 8.07 8.07 2238 2210 2210 390 WML183 6/08/2020 7.02 7.55 7.53 3955 3880 3880 3120 WML281 10/08/2020 6.80 7.02 7.53 7.53 3955 3880 3880 3120 WML282 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML277 4/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.09 7.29 7.29 7.09 8.01 8.90 800 850 850 850 WMLP279 4/08/2020 7.09 7.29 7.29 7.29 870.2 718 718 544 WMLP308 4/08/2020 7.09 7.27 7.27 7.27 1296 1150 1150 688 WMLP304 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP305 11/08/2020 6.80 7.07 7.29 7.29 870.2 718 718 544 WMLP308 5/08/2020 7.04 6.94 6.94 7.25 7.99 904 904 566 WMLP301 11/08/2020 6.86 7.29 7.33 7.33 1315 130 130 130 130 908 WMLP303 5/08/2020 6.86 6.81 6.81 1118 1160 1160 694 WMLP304 10/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP305 10/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP304 10/08/2020 7.09 7.33 7.33 7.33 1315 130 130 130 130 160 903 WMLP305 10/08/2020 7.09 7.37 7.37 7.37 1296 1140 140 140 140 140 140 140 140 140 14	RA27	4/08/2020	7.04	7.35	7.35	1460	1460	1460	852
T2P 7/08/2020 6.72 6.86 6.86 1088 1090 1090 665 T3A 7/08/2020 6.92 7.1 7.10 2154 2080 2080 1260 T3P 7/08/2020 7.33 7.67 7.67 1878 1855 1850 945 T4A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML13C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 432 432 WML193 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML12DB 10/08/2020 6.86 6.76 6.78 6.78 431.5 439 439 258 WML12DB 11/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML128 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML281 11/08/2020 6.80 6.72 7.28 7.23 7.53 3955 3880 3880 3820 WML291 11/08/2020 6.80 6.72 7.28 7.23 7.53 3955 3880 3880 3120 WML291 11/08/2020 6.80 6.72 7.28 7.23 7.53 3955 3880 3880 3120 WML291 11/08/2020 6.80 6.72 6.94 6.94 425.8 439 439 236 WML291 11/08/2020 6.80 6.72 6.94 6.95 6.95 642 672 672 393 WML281 11/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML297 4/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML281 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP279 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP308 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP324 5/08/2020 6.86 6.81 6.81 6.81 1118 1160 1160 694 WMLP325 6/08/2020 7.02 7.03 7.14 7.14 1475 1500 1500 903 WMLP326 7/08/2020 6.86 7.3 7.30 1898 1630 1330 1360 WMLP327 7/08/2020 6.87 6.92 6.92 902.2 9904 9904 904 566 WMLP328 10/08/2020 7.01 7.27 7.27 1296 1150 1150 688 WMLP328 10/08/2020 6.86 6.81 6.81 6.81 1118 1160 1160 694 WMLP328 10/08/2020 6.86 7.3 7.30 1898 1630 1330 1360 WMLP338 6/08/2020 6.88 7.15 7.15 7.15 617.2 646 646 646 375 WMLP338 6/08/2020	RM10	10/08/2020	6.96	6.82	6.82	1417	1520	1520	1001
T3A 7/08/2020 6.92 7.1 7.10 2154 2080 2080 1260 T3P 7/08/2020 7.30 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML121 11/08/2020 7.05 8.07 8.07 8.07 2238 2210 2210 390 WML181 11/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML183 6/08/2020 6.82 6.95 6.95 642 672 672 339 WML261 10/08/2020 6.80 7.28 7.28 1072 1140 1140 140 646 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 768 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.20 7.33 7.33 7.35 7.35 7.35 7.35 7.35 7.35			7.11	7.13	7.13	1331	1370	1370	826
T3P 7/08/2020 7.33 7.67 7.67 1878 1850 1850 945 T4A 7/08/2020 7.02 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 7.69 1730 1710 1710 1710 T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 390 WML183 6/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML183 6/08/2020 6.85 6.78 6.78 431.5 439 439 268 WML281 10/08/2020 6.85 6.78 6.78 315 439 439 268 WML281 10/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML281 10/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML282 11/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML283 3/08/2020 6.80 7.28 7.28 1072 1140 1140 648 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.09 7.27 7.27 1296 1150 1150 688 WMLP280 4/08/2020 7.09 7.27 7.27 129 870.2 718 718 544 WMLP280 4/08/2020 7.09 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP301 11/08/2020 7.04 8.25 8.25 2990 2980 2980 2220 WMLP303 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 10/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 10/08/2020 6.80 7.07 7.27 7.27 1296 1150 1150 688 WMLP303 10/08/2020 6.80 7.03 7.14 7.14 1475 1500 1500 903 WMLP303 5/08/2020 7.04 6.94 6.94 7.32 7.49 7.49 504 WMLP304 10/08/2020 7.07 7.07 7.33 7.33 7.33 7.33 7.34 7.34 7.35 7.39 7.39 7.39 7.39 7.39 7.39 7.39 7.39									
T4A 7/08/2020 7.00 7.26 7.26 1381 1400 1400 812 T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 623 623 456 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115C 30/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML129 11/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML129 10/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML181 11/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML183 6/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML239 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 10/08/2020 6.80 7.28 7.28 1072 1140 1140 648 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP303 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP303 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP304 5/08/2020 7.09 7.29 7.29 802.2 990 2980 2980 2220 WMLP303 15/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP303 15/08/2020 7.07 7.43 7.43 1356 1340 1340 960 WMLP304 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP305 15/08/2020 7.07 7.29 7.29 7.29 902.2 994 904 904 566 WMLP305 7/08/2020 6.86 6.81 6.81 1118 1160 1160 694 WMLP305 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1360 WMLP307 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1360 WMLP308 6/08/2020 7.07 7.07 7.43 7.43 1356 1340 1340 960 WMLP307 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1360 WMLP308 6/08/2020 7.07 7.09 7.29 7.29 7.29 7.32 7.32 1440 1480 1480 1480 836 WMLP308 6/08/2020 7.07 7.09 7.29 7.29 7.32 7.32 1440 1480 1480 836 WMLP308 6/08/2020 7.07 7.09 7.03 7.03 7.03 1277 1320 1320 200 WMLP308 6/0									
T4P 7/08/2020 7.42 7.69 7.69 1730 1710 1710 1000 T5 5/08/2020 6.92 6.75 6.75 707 623 456 WML115C 7/08/2020 6.96 6.99 6.99 6.99 11310 1320 1320 778 WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 3/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML1191 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML121 11/08/2020 7.55 8.07 8.07 8.07 2238 2210 2210 1390 WML181 11/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML183 6/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 10/08/2020 6.80 7.28 7.28 1072 1140 1140 646 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.20 7.23 7.23 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.09 7.27 7.27 1296 1150 1150 688 WMLP279 4/08/2020 7.09 7.27 7.27 1296 1150 1150 688 WMLP280 11/08/2020 6.80 7.28 8.25 2990 2980 2980 2920 WMLP301 11/08/2020 6.42 6.91 6.91 8.96 946 946 946 526 WMLP302 10/08/2020 6.42 6.91 6.91 8.96 946 946 946 526 WMLP303 10/08/2020 6.80 8.04 8.25 8.25 2990 2980 2980 2980 2980 WMLP301 11/08/2020 6.80 7.27 7.27 127 1296 1150 1150 688 WMLP303 10/08/2020 6.80 8.04 8.25 8.25 2990 2980 2980 2980 2980 WMLP303 10/08/2020 6.84 6.94 6.94 732.5 749 749 750 WMLP303 10/08/2020 6.87 6.92 6.92 90.22 904 904 566 WMLP303 10/08/2020 7.04 6.94 6.94 732.5 749 749 750 WMLP304 10/08/2020 7.07 7.29 7.39 7.32 1440 1480 1480 883 WMLP305 10/08/2020 7.07 7.09 7.39 7.30 1898 1630 1630 1360 WMLP306 6/08/2020 7.01 7.43 7.43 1356 1340 1340 1340 960 WMLP307 7/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP303 6/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 865 WMLP304 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1363 1360 WMLP303 6/08/2020 6.86 6.87 6.87 6.87 528.7 558 558 326 WMLP304 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1363 1360 WMLP303 6/08/2020 6.86 7.3 7.30 1898 1630 1630 1363 1360 WMLP304 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1363 1360 WMLP304 10/08/2020 6.87 6.89 6.92 393									
T5 5/08/2020 6.92 6.75 6.75 707 623 623 456 WML113C 7/08/2020 6.96 6.99 6.99 1310 1320 1320 778 WML115E 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML129 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML183 6/08/2020 6.82 6.95 6.95 642 672 672 393 WML281 10/08/2020 6.80 7.28 7.28 1072 1140 1140 648 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.09 7.29 7.29 870.2 718 718 544 WMLP280 4/08/2020 7.09 7.27 7.27 1296 1150 1150 688 WMLP281 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP302 10/08/2020 7.04 8.25 8.25 2990 2980 2980 2220 WMLP303 11/08/2020 7.04 6.94 6.94 8.95 749 749 504 WMLP308 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP303 5/08/2020 6.89 6.91 6.91 896 946 946 526 WMLP303 10/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP303 10/08/2020 6.80 7.05 7.07 7.27 7.27 1296 1150 1150 688 WMLP303 10/08/2020 6.87 6.93 6.94 732.5 749 749 504 WMLP304 5/08/2020 7.04 6.94 6.94 6.94 732.5 749 749 504 WMLP305 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP305 5/08/2020 7.07 7.29 7.33 7.33 1356 1340 1340 960 WMLP307 10/08/2020 6.86 7.3 7.30 1898 1630 1340 1340 960 WMLP308 6/08/2020 7.07 7.09 7.03 7.31 7.33 1356 1340 1340 960 WMLP307 10/08/2020 6.86 7.3 7.30 1898 1630 1340 1340 960 WMLP308 6/08/2020 7.07 7.09 7.03 7.31 7.43 7.43 1356 1340 1340 960 WMLP307 10/08/2020 6.86 6.87 6.87 528.7 558 558 326 WMLP307 10/08/2020 6.86 6.87 6.87 528.7 558 558 326 WMLP308 6/08/2020 7.09 7.09 7.03 7.15 7.15 617.2 646 646 646 375 WMLP308 3/08/2020 6.85 7.15 7.15 617.2 646 646 646 375 WMLP304 3/08/2020 6.									
WML113C									
WML115B 3/08/2020 6.68 7.15 7.15 2390 2480 2480 1783 WML15C 3/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 7.17 7.17 571.3 432 432 386.7 7.17 7.17 571.3 432 432 386.7 7.17 7.17 571.3 432 432 386.7 7.17 7.17 571.3 432 432 386.7 7.17 7.17 571.3 432 432 386.7 7.17 7.17 570.3 432 432 386.7 7.17 7.17 580 590 590 340 340 340 340 258 340 340 258 340 340 258 340 340 258 340 340 258 340 340 258 340 340 258 340 340 340 258 340 340 340 258 340 340 340 258 340									
WML115C 03/08/2020 7.28 7.17 7.17 571.3 432 432 386.7 WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.78 6.78 431.5 439 439 258 WML129 11/08/2020 7.55 8.07 8.07 2238 2210 2210 3290 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 3390 WML183 6/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML239 3/08/2020 6.82 6.95 6.95 6.42 672 672 393 WML261 10/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WML277 4/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP279 4/08/2020 7.00 7.27 7.27 129 870.2 718 718 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 6.80 7.05 8.25 8.25 2990 2980 2920 WMLP302 10/08/2020 7.04 8.25 8.25 2990 2980 2920 WMLP303 11/08/2020 7.04 8.25 8.25 2990 2980 2980 2220 WMLP304 10/08/2020 6.84 8.25 8.25 2990 2980 2980 2220 WMLP305 10/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP305 10/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP308 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP323 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP323 5/08/2020 7.07 7.29 7.32 7.32 1440 1480 1480 838 WMLP326 7/08/2020 7.07 7.29 7.32 7.32 1440 1480 1480 838 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 6.87 6.87 6.87 528.7 558 558 326 WMLP336 6/08/2020 7.02 7.03 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP326 7/08/2020 7.02 7.03 7.03 7.31 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP337 6/08/2020 7.02 7.03 7.03 7.03 7.743 1356 1340 1340 960 WMLP327 7/08/2020 6.87 6.87 6.87 528.7 558 558 326 WMLP336 6/08/2020 7.02 7.03 7.03 7.03 7.03 1277 1320 1320 222 WMLP337 6/08/2020 6.86 6.87 6.87 528.7 558 558 326 WMLP338 6/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP338 6/08/2020 6.86 7.3 7.50 6.88 870 914 914 537									
WML119 11/08/2020 7.19 7.72 7.72 1170 1250 1250 720 WML120B 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.85 6.72 6.94 6.94 425.8 439 439 258 WML129 11/08/2020 6.85 6.78 6.78 6.78 431.5 439 439 236 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML183 6/08/2020 7.52 7.53 3955 3880 3880 3820 WML239 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML281 10/08/2020 6.80 7.28 7.28 1072 1140 1140 646 WML282 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 850 WMLP279 4/08/2020 8.04 8.25 8.25 2990 2980 2980 WMLP301 11/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP302 10/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP303 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP323 5/08/2020 6.87 6.92 6.92 902.2 904 904 566 WMLP325 7/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 7/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP326 7/08/2020 6.87 7.29 7.29 7.33 7.33 1356 1340 1340 960 WMLP303 6/08/2020 7.01 7.03 7.14 7.14 1475 1500 1500 903 WMLP304 10/08/2020 6.87 6.92 6.92 902.2 904 904 566 WMLP305 10/08/2020 6.87 6.92 7.32 7.32 1440 1480 1480 1480 836 WMLP326 7/08/2020 7.09 7.29 7.32 7.32 1440 1480 1480 1480 836 WMLP327 7/08/2020 7.09 7.29 7.32 7.32 1440 1480 1480 1480 836 WMLP304 7/08/2020 7.07 7.09 7.03 7.43 7.43 1356 1340 1340 960 WMLP307 7/08/2020 7.07 7.09 7.03 7.03 7.43 7.43 1356 1340 1340 960 WMLP307 7/08/2020 7.09 7.09 7.03 7.03 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.09 7.09 7.39 7.32 7.32 7.32 7.32 7.32 7.32 7.32 7.32									
WML120A 10/08/2020 6.80 7.07 7.07 580 590 590 340 WML120B 10/08/2020 6.72 6.94 6.94 425.8 439 439 258 WML121 11/08/2020 6.85 6.78 6.78 431.5 439 439 238 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML233 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 10/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP274 4/08/2020 7.20 7.33 7.33 1315 1320 736 WMLP278 4/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 736 WMLP278 4/08/2020 6.8									
WML120B 10/08/2020 6.72 6.94 6.94 425.8 439 439 258 WML129 11/08/2020 6.85 6.78 6.78 431.5 439 439 238 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 2210 1390 WML239 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 768 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP280 4/08/2020 7.00 7.05 7.05 860 850 850 554 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302									
WML129 11/08/2020 6.85 6.78 6.78 431.5 439 439 236 WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1398 WML183 608/2020 7.02 7.53 7.53 3955 3880 3880 380 3120 WML239 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.19 7.29 7.29 870.2 718 514 WMLP279 4/08/2020 7.00 7.27 7.27 1296 1150 1150 680 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301									
WML181 11/08/2020 7.55 8.07 8.07 2238 2210 2210 1390 WML183 6/08/2020 7.02 7.53 7.53 3955 3880 3120 WML239 3/08/2020 6.82 6.95 6.95 6.95 642 672 672 339 WML261 10/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 850 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP302 10/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP311 5/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP323 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP324 5/08/2020 7.29 7.32 7.32 1440 1480 1480 838 WMLP325 5/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP326 10/08/2020 7.01 7.43 7.43 1356 1340 1340 960 WMLP326 10/08/2020 7.02 7.03 7.32 7.32 1440 1480 1480 838 WMLP326 10/08/2020 7.02 7.03 7.32 7.32 1440 1480 1480 838 WMLP326 10/08/2020 7.02 7.03 7.31 1277 1320 1320 WMLP336 6/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.84 7.28 7.35 1774 1830 1330 1305 WMLP336 6/08/2020 6.84 7.28 7.35 1774 1830 1330 1305 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1330 1305 WMLP338 6/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.85 6.92 8.92 393.8 422 422 243 WMLP349 3/08/2020 6.85 6.92 8.92 393.8 422 422 243 WMLP349 3/08/2020 6.86 6.88 8.88 870 914 914 553 WMLP349 3/08/2020 6.85 6.59 6.59 345.2 364 364 244									
WML183 6/08/2020 7.02 7.53 7.53 3955 3880 3880 3120 WML239 3/08/2020 6.82 6.95 6.95 6.95 642 672 672 393 WML261 10/08/2020 6.80 7.28 7.28 1072 1140 1140 648 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP280 4/08/2020 7.19 7.29 7.29 870.2 718 1718 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 10/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP315 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 10/08/2020 6.67 6.92 90.2 902 2 904 904 566 WMLP323 5/08/2020 6.67 6.92 6.92 902 2 904 904 566 WMLP325 5/08/2020 7.10 7.27 7.32 7.32 1440 1480 1480 838 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.02 7.03 7.30 7.43 1356 1340 1340 960 WMLP326 7/08/2020 6.67 6.92 7.32 7.32 1440 1480 1480 838 WMLP326 7/08/2020 7.02 7.30 7.33 7.33 1356 1340 1340 960 WMLP327 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP328 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 865 WMLP337 6/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 865 WMLP338 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP337 6/08/2020 7.29 7.32 7.32 1440 1480 1480 838 WMLP338 10/08/2020 6.86 7.3 7.30 1898 1630 1330 1630 WMLP337 6/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 865 WMLP338 6/08/2020 6.84 7.28 7.75 588 558 326 WMLP338 6/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.85 6.92 892 393.8 422 422 243 WMLP349 3/08/2020 6.85 6.99 393.8 422 422 243 WMLP349 3/08/2020 6.85 6.99 6.99 393.8 422 422 243 WMLP349 3/08/2020 6.85 6.59 6.59 345.2 364 364 244									
WML239 3/08/2020 6.82 6.95 6.95 642 672 672 393 WML261 11/08/2020 6.80 7.28 7.28 1072 1140 1140 646 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP279 4/08/2020 7.19 7.29 7.29 870.2 718 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 11/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP303 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP304 19/0									
WML261 10/08/2020 6.80 7.28 7.28 1072 1140 1140 646 WML262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP280 4/08/2020 6.80 7.05 7.05 860 850 850 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 544 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2202 WMLP302 10/08/2020 7.04 6.91 6.91 896 946 946 526 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 749									
WMLP262 11/08/2020 7.90 8.31 8.31 2782 2730 2730 1730 WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 870.2 718 718 514 WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2980 2220 WMLP302 10/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP303 10/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 10/08/2020 6.67 6.92 90.22 902 2 904 904 566 WMLP332 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP332 5/08/2020 7.03 7.37 7.32 7.32 1440 1480 1480 838 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 838 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.02 7.03 7.03 7.03 1277 1320 1320 WMLP336 6/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.20 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.20 7.03 7.63 7.63 2605 2590 1600 WMLP337 7/08/2020 7.27 7.08 7.68 7.68 7.58 588 568 326 WMLP338 6/08/2020 6.84 7.28 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP349 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.86 6.87 6.89 393.8 422 422 243 WMLP349 3/08/2020 6.86 6.86 8.88 870 914 914 914 537 WMLP349 3/08/2020 6.85 6.59 6.59 345.2 364 364 244									
WMLP277 4/08/2020 7.20 7.33 7.33 1315 1320 1320 766 WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 544 WMLP279 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP380 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 10/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP325 5/08									
WMLP278 4/08/2020 7.19 7.29 7.29 870.2 718 718 544 WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 10/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP303 5/08/2020 7.03 7.14 7.14 1745 1500 1500 903 WMLP311 5/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP323 5/08/2020 6.89 6.92 902 904 566 WMLP324 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP325 5/08/2020 7.29									
WMLP279 4/08/2020 6.80 7.05 7.05 860 850 850 544 WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2920 WMLP302 10/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP308 5/08/2020 7.04 6.94 6.94 732.5 749 749 750 903 WMLP311 5/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP323 5/08/2020 6.69 7.11 7.11 1706 1720 1720 1224 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WMLP280 4/08/2020 7.00 7.27 7.27 1296 1150 1150 688 WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 110/08/2020 6.24 6.91 6.91 896 946 946 526 WMLP308 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 110/08/2020 6.09 7.11 7.11 7.11 706 1720 1720 1720 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 480 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1366 WMLP328 110/08/2020 7.02 7.03 7.03 1277 1320 1320 WMLP336 6/08/2020 7.29 7.32 7.32 1400 1480 1480 480 WMLP337 6/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP337 6/08/2020 7.23 7.63 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 7.23 7.63 7.63 7.63 2605 2590 2590 1600 WMLP343 3/08/2020 6.84 7.22 7.28 1774 1830 1830 1310 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP343 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.65 6.59 6.59 345.2 364 364 244									544
WMLP301 11/08/2020 8.04 8.25 8.25 2990 2980 2980 2220 WMLP302 10/08/2020 6.42 6.91 6.91 896 946 946 528 WMLP308 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 10/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP323 5/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP324 5/08/2020 6.86 6.87 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP338 10/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP338 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP343 3/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244									
WMLP302 10/08/2020 6.42 6.91 6.91 896 946 946 526 WMLP305 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP311 5/08/2020 7.04 6.94 6.94 7.32 5 749 749 749 WMLP320 10/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP328 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 6.70 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1130 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.82 6.89 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.85 6.59 6.59 345.2 364 364 244									
WMLP308 5/08/2020 7.03 7.14 7.14 1475 1500 1500 903 WMLP310 15/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 110/08/2020 6.90 7.11 7.11 7.11 7106 1720 1720 1720 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP328 110/08/2020 7.02 7.03 7.03 1898 1630 1630 1366 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1130 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 636 375 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 646 375 WMLP343 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 8870 914 914 914 537 WMLP348 3/08/2020 6.62 6.88 6.88 8870 914 914 537 WMLP349 3/08/2020 6.45 6.59 6.59 345.2 364 364 244									526
WMLP321 5/08/2020 7.04 6.94 6.94 732.5 749 749 504 WMLP320 10/08/2020 6.90 7.11 7.11 1706 1720 17224 WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP338 10/08/2020 7.23 7.63 2.605 2590 2590 1600 WMLP338 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP348 3/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP343 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 8.88 870 914 914 537 WMLP349 3/08/2020 6.62 6.88 8.88 870 914 914 537 WMLP358 3/08/2020 6.65 6.59 6.59 345.2 364 364 244									903
WMLP320 10/08/2020 6.90 7.11 7.11 1706 1720 1720 1224 WMLP324 5/08/2020 6.687 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP328 10/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 6.70 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 628.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 553 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244									504
WMLP323 5/08/2020 6.67 6.92 6.92 902.2 904 904 566 WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1366 WMLP328 1100/80/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1130 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.65 6.59 6.59 345.2 364 364 244									1224
WMLP324 5/08/2020 6.88 6.81 6.81 1118 1160 1160 694 WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1366 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.65 6.59 6.59 345.2 364 364 244				6.92		902.2	904		566
WMLP325 5/08/2020 7.29 7.32 7.32 1440 1480 1480 836 WMLP326 7/08/2020 7.10 7.43 7.43 1356 1340 1340 960 WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP3493 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244									694
WMLP327 7/08/2020 6.86 7.3 7.30 1898 1630 1630 1365 WMLP328 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP349 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244	WMLP325	5/08/2020				1440			836
WMLP338 10/08/2020 7.02 7.03 7.03 1277 1320 1320 865 WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.85 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP349 3/08/2020 6.65 6.59 6.59 345.2 364 364 244	WMLP326	7/08/2020	7.10	7.43	7.43	1356	1340	1340	960
WMLP336 6/08/2020 6.74 6.87 6.87 528.7 558 558 326 WMLP337 6/08/2020 7.23 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244	WMLP327	7/08/2020	6.86	7.3	7.30	1898	1630	1630	1365
WMLP337 6/08/2020 7.23 7.63 7.63 2605 2590 2590 1600 WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244	WMLP328	10/08/2020	7.02	7.03	7.03	1277	1320	1320	865
WMLP338 6/08/2020 6.84 7.28 7.28 1774 1830 1830 1100 WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244	WMLP336	6/08/2020	6.74	6.87	6.87	528.7	558		326
WMLP343 3/08/2020 6.85 7.15 7.15 617.2 646 646 375 WMLP346 3/08/2020 6.82 6.92 393.8 422 422 243 WMLP3493 3/08/2020 6.62 6.82 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244		6/08/2020	7.23	7.63	7.63	2605	2590	2590	1600
WMLP346 3/08/2020 6.82 6.92 6.92 393.8 422 422 243 WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244					7.28				1100
WMLP349 3/08/2020 6.62 6.88 6.88 870 914 914 537 WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244	WMLP343	3/08/2020	6.85	7.15	7.15		646	646	375
WMLP358 3/08/2020 6.45 6.59 6.59 345.2 364 364 244									243
									537
YAP016 4/08/2020 7.02 7.01 7.01 856.8 848 848 553									244
	YAP016	4/08/2020	7.02	7.01	7.01	856.8	848	848	553

WMLP346 1092020 6.98 6.98 495 495 335 345 WMLP323 1092020 6.22 6.62									
WMLP337 20992020 7.18 7.18 2687 2567 2004 20092020 7.05 7.05 428.6 520	VAP016	2/09/2020	7.03		7.03	1012		1012	705
WMLP395									
WML1293 (1092020 7.05									
WMLP369									
WML1298 1092020 7.00 7.00 662 652 644 644 682 682 644 WML1294 1092020 6.98 6.98 6.98 495 495 331 WML1293 1092020 6.98 6.98 6.98 495 495 331 WML1293 1092020 6.82 6.82 6.82 6.82 6.82 6.82 6.82 8.82 WML1293 1092020 6.80 6.96									
WMLP34									
WMLP346			7.00		7.00	652			444
WMLP341 1009200 6.82 6.82 614.2 61		1/09/2020	6.62		6.62	844			582.9
WMLP321 1092020 6.82 6	WMLP346	1/09/2020	6.98		6.98	495		495	332
WMLP311	WMLP343	1/09/2020	7.10		7.10	604.2		604.2	410
WMLP328 309/2020 7.08 7.08 1637 1627 1162 8112	WMLP323	1/09/2020	6.82		6.82	814.2		814.2	560
WMLP328 309/2020 7.08 7.08 1637 1627 1162 8112	WMLP311	1/09/2020	6.96		6.96	1075		1075	749.4
RM10 309/2020 7.08 7.08 1637 1667 1668 WMLP20 309/2020 6.89 6.89 1296									
WMLP279									
WMLP30									
WML113C 309/2020 7.10 7.10 99.0 980.6 678. WML123D 209/2020 7.18 7.18 1330 1330 934. WML123D 2170/2020 7.20 7.20 2572 2572 1330 WML123D 2170/2020 7.20 7.20 2572 2572 2572 1330 WML123D 2170/2020 7.14 7.14 409.3 409.3 275. WML123D 1/10/2020 6.43 6.45 6.45 539 539 364. WML123D 1/10/2020 6.43 6.43 6.82 6.87 409.3 275. WML123D 1/10/2020 6.43 6.43 6.82 6.87 409.3 275. WML23D 1/10/2020 6.50 6.60 6.61 6.51 851. WML23D 1/10/2020 6.52 6.82 6.82 647.4 647.4 406.3 WML123D 1/10/2020 6.54 6.85 6.85 503.5 503.5 330.5 WML123D 1/10/2020 6.54 6.85 6.85 503.5 503.5 330.5 WML123D 1/10/2020 6.54 6.85 6.85 503.5 7.388.7 988.7									
WML 1208 2009/2020 6.82 6.82 438.2 238.2									
T2A 309/9020 7.48 7.18 1330 1330 5984									
WMLP393	***************************************		0.02						
WMLP387	T2A	3/09/2020	7.18		7.18	1330		1330	938.4
WMLP396 2210/0200 6.84 6.84 6.98 539 596.4	YAP016	2/10/2020	6.78		6.78	1096		1096	766.6
WML1292	WMLP337	2/10/2020	7.20		7.20	2572		2572	1935
WMLP369	WMLP336	2/10/2020	6.84		6.84	539		539	364.5
WMLP346	WML129	2/10/2020	7.14		7.14	409.3		409.3	273.9
WMLP349 1/10/2020 6.85 6.85 6.85 503.5 503	WMLP358	1/10/2020	6.43		6.43	368.7		368.7	246.2
WMLP349 1/10/2020 6.85 6.85 6.85 503.5 503	WML239	1/10/2020	6.82		6.82	647.4		647.4	440.8
WMLP494 1/10/2002 6.84 6.84 5.85 503.5 503.5 33.8 5.8 33.8 5 WMLP493 1/10/2002 6.70 6.70 983.2 983.2 983.2 886 WMLP411 1/10/2002 6.85 6.85 1.287 1.287 902.5 884 1.10/2002 7.03 7.03 1.200 1.200 844 1.10/2002 7.06 6.85 6.85 1.287 1.287 902.5 884 1.10/2002 7.06 6.70 6.70 983.2 983.2 886 1.10/2002 7.06 6.85 6.85 1.287 1.287 902.5 886 1.10/2002 6.82 6.82 889.2 889.2 889.2 614.2 889.2 WMLP279 6/10/2002 6.89 6.89 8.89 9.27.5 902.									
WMLP431									
WMLP23									
WMLP311 11/10/2001 6.85 6.85 1287 1297 1200 1200 1436 WMLP30 61/10/2002 7.06 7.06 1588 1588 1588 1118 WMLP30 61/10/2002 6.82 6.82 889 2.889.2 843 1118 WMLP30 61/10/2002 6.89 6.99 927.5 927.5 927.5 643.1 WMLP30 61/10/2002 6.99 6.99 927.5 927.5 927.5 643.1 WMLP30 21/10/2002 6.99 6.99 927.5 927.5 927.5 643.1 WMLP30 21/10/2002 7.07 7.07 7.07 1222 1222 856 643.1 WMLP30 21/10/2002 7.07 7.07 7.07 1222 1222 856 643.1 WMLP30 21/10/2002 7.04 7.04 124 123 124 124 874.7 RML 11/10/200 7.04 7.04 124 1273 1273 1282 856 643 124 124 124 124 124 124 124 124 124 124									
WMLP286									
RM10 PATRICE	_								
WMLP279 6/10/2020 6.89 6.82 889.2 889.2 1614.2 WML1280 6/10/2020 6.89 6.89 927.5 927.5 WML1280 2/10/2020 6.99 6.99 927.5 927.5 WML1280 2/10/2020 7.35 7.35 466.1 486.1 327.4 WML1280 2/10/2020 7.35 7.35 466.1 486.1 327.4 WML1280 2/11/2020 7.35 7.35 466.1 486.1 327.4 WML1280 2/11/2020 7.35 7.35 466.1 486.1 327.4 WML1280 2/11/2020 7.06 7.07 7.07 1222 1222 858 WML1280 2/11/2020 7.06 7.09 7.09 1531 1730 1730 1086 WML1280 3/11/2020 7.06 7.22 7.22 1265 1360 1360 889.1 WML1280 3/11/2020 6.61 6.9 6.90 10/6 1150 1150 762 WML1280 3/11/2020 6.61 6.9 6.90 10/6 1151 1150 762 WML1280 3/11/2020 7.29 7.29 1788 1788 1788 1288 WML1313 6/11/2020 7.10 7.32 7.74 7.74 1724 1722 1830 1830 1350 WML1316 5/11/2020 6.89 7.04 7.04 951 1090 6.96 89.1 WML1316 5/11/2020 6.89 7.04 7.04 951 1090 1990 6.96 WML1196 2/11/2020 6.89 7.04 7.04 951 1090 1990 6.96 WML1196 2/11/2020 7.35 7.35 7.35 5.57.2 5.57.2 5.57.2 5.57.2 WML1200 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML1200 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML1200 3/11/2020 7.30 7.30 7.30 406.5 466 466 227 WML1200 3/11/2020 7.30 7.96 7.96 2141 2410 2410 1563 WML1200 3/11/2020 7.30 7.30 7.30 406.5 466 466 227 WML1219 3/11/2020 6.73 6.72 6.72 6.72 6.72 6.72 6.72 6.72 6.72									842
WML Page Grid Page Grid Page Grid Page Grid Page Grid Page P									1115
WML130C 61/02/020 6.99 6.99 6.99 6.97 5.927.5 5.927.5 643.1 WML120B 21/02/020 7.07 7.07 1222 1222 858 680.1 486.1 327.4	WMLP279	6/10/2020	6.82		6.82	889.2		889.2	614.2
WML113C G10/2020 6.99 6.99 6.99 6.92 5.5 927.5 643.1 WML1200 2710/2020 7.07 7.07 1222 1222 858 MML27 MML2020 7.35 7.35 486.1 486.1 327.4 MML2020 7.07 7.07 1222 1222 858 MML27 411/2020 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.07 7.09	WMLP280	6/10/2020	6.89		6.89	1252		1252	879.8
WML 120B 2/11/2020						927.5			
Ashton well									277.8
Ashton well									
GM1									
RAZ7 4/11/2020 7.04 7.04 12/44 874.7 RMM0 4/11/2020 7.06 7.09 7.09 1531 1730 1730 1088 T2A 6/11/2020 7.06 7.22 7.22 12/65 13/60 13/60 1889.1 T2P 6/11/2020 6.81 6.9 6.90 10/76 1150 1150 13/60 T3A 6/11/2020 7.06 7.29 6.79 2100 2100 153/6 T3A 6/11/2020 7.16 7.31 7.31 12/40 13/40 13/40 13/40 T3A 6/11/2020 7.16 7.31 7.31 12/40 13/40 13/40 13/40 T4P 6/11/2020 7.16 7.32 7.74 7.74 1722 183/0 183/0 183/0 T4P 6/11/2020 7.32 7.74 7.74 1722 183/0 183/0 183/0 WML113C 5/11/2020 6.89 7.04 7.04 95/1 1990 1990 65/56.8 WML118B 2/11/2020 7.35 7.35 557.2 557.2 376.4 WML119B 1/11/2020 7.32 7.73 10/33 1190 1990 65/56.8 WML119B 3/11/2020 7.32 7.73 10/33 1190 1990 65/57.2 WML120A 3/11/2020 7.32 7.73 7.73 10/33 1190 1190 1990 65/57.2 WML120B 3/11/2020 7.30 7.26 7.26 75/18 809 809 514.3 WML120B 3/11/2020 7.30 7.26 7.26 75/18 809 809 514.3 WML129 9/11/2020 7.30 7.26 7.26 75/18 809 809 514.3 WML129 9/11/2020 6.73 6.72 6.72 472.6 54/6 46/6 46/6 27/6 WML129 9/11/2020 6.78 7.03 7.96 7.96 214/1 24/10 24/10 15/60 15/60 WML183 9/11/2020 6.92 7.54 7.54 3962 48/60 46/60 36/6 36/6 WML299 5/11/2020 6.74 7.13 7.13 62/6 72 11/4 24/10 24/10 15/60 36/6 WML299 5/11/2020 6.74 7.13 7.13 62/6 72 11/4 24/10 24/10 15/60 36/6 WML293 5/11/2020 6.74 7.13 7.13 62/6 72 17/2 43/6 46/6 46/6 27/2 WML291 5/11/2020 6.92 7.54 7.54 89/6 48/60 48/60 36/6 36/6 WML293 5/11/2020 6.94 7.04 7.04 64/6 72 47/2 6/6 6/7 2/7 2/7 43/6 6/6 46/6 72/7 2/7 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/6 7/2 7/2 43/6 6/6 7/2 7/2 43/6 6/6 46/6 7/2 7/2 43/6 6/7 6/7 6/7 6/7 6/7 6/7 6/7 6/7 6/7 6			1.35						321.4
RM10 4/11/2020 7.10 7.09 7.09 1.531 1730 1082 T2A 6/11/2020 7.06 7.22 7.22 1265 1360 1360 889.1 T2P 6/11/2020 6.81 6.9 6.90 1076 1150 1150 752.3 T3A 6/11/2020 7.29 7.29 1788 1788 1288 T3A 6/11/2020 7.32 7.74 7.74 1722 1830 1830 1830 1234 T5 3/11/2020 6.81 6.81 6.81 6.90 6.90 6.90 6.90 6.95 6.95 6.95 WML15B 2/11/2020 6.80 6.80 6.80 2408 2408 1796 WML115B 2/11/2020 7.35 7.35 557.2 557.2 557.2 557.2 557.2 757.2 757.2 757.2 WML1203 3/11/2020 6.78 7.03 7.26 7.26 761.8 809 80 80 65 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20			701						
TZA 6/11/2020 6.61 6.9 6.90 1076 1150 1150 889.1 TZP 6/11/2020 6.61 6.9 6.90 1076 1150 1150 150 752.3 T3A 6/11/2020 7.16 6.79 1.70 1150 1150 150 752.3 T3A 6/11/2020 7.16 7.31 7.31 7.31 1240 1340 1340 889.1 T3A 6/11/2020 7.16 7.31 7.31 1240 1340 1340 889.1 T3A 6/11/2020 7.16 7.31 7.31 1240 1340 1340 874.5 T3A 6/11/2020 6.81 6.81 809.6 809.6 809.6 556.8 WML113C 5/11/2020 6.89 7.04 7.04 951 1090 1090 669.8 WML118B 2/11/2020 6.80 6.80 2408 2408 1788 WML118B 2/11/2020 7.32 7.73 7.35 557.2 557.2 756.4 WML119B 3/11/2020 7.32 7.73 7.73 1033 1190 1190 7.32 7.73 1040.1 WML120A 3/11/2020 7.03 7.26 7.26 751.8 809 809 514.3 WML120B 3/11/2020 6.78 7.03 7.03 406.5 466 466 466 270 WML129 9/11/2020 6.78 7.03 7.03 406.5 466 466 466 270 WML129 9/11/2020 6.78 7.03 7.03 406.5 466 466 318 WML129 9/11/2020 6.78 7.96 7.96 2/141 2410 1563 WML129 3/11/2020 6.74 7.96 7.96 2/141 2410 2410 1563 WML129 3/11/2020 6.74 7.13 7.13 626.6 721 721 426.6 WML128 9/11/2020 6.74 7.13 7.13 626.6 721 721 426.6 WML128 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.6 WML1287 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.0 WML1287 9/11/2020 6.99 6.99 1189 1189 8130 WML129 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML1292 4/11/2020 6.99 6.99 1189 1189 8120 WML1292 4/11/2020 6.99 6.99 1189 1189 8120 WML1292 4/11/2020 6.99 6.99 1189 1189 8120 WML1293 1/11/2020 6.84 7.06 7.06 645.7 727 727 431 WML1290 4/11/2020 6.99 6.99 1189 1189 8120 4/11/2020 6.99 6.99 1189 1189 8120 120 7.04 7.04 644.6 644									
TZP 6/11/2020 6.61 6.9 6.90 1076 1150 1150 752.2 T3A 6/11/2020 6.79 7.29 7.29 1788 1788 1788 1280 1789 6/11/2020 7.29 7.29 1788 1788 1788 1280 1789 6/11/2020 7.29 7.29 1788 1788 1280 1788 1788 1280 1789 6/11/2020 7.32 7.74 7.74 1722 1830 1830 1234 175 311/2020 6.81 6.81 6.81 809.6 809.6 556.8 1090 6/11/2020 7.32 7.74 7.74 1722 1830 1830 1234 175 1772 1772 1830 1830 1234 175 1772 1772 1830 1830 1234 175 1772 1772 1830 1830 1234 175 1772 1772 1772 1772 1772 1772 1772									
T3A 6/11/2020 7.29 7.29 1788 1788 1788 1286 T3B 6/11/2020 7.29 7.29 1788 1788 1286 T3A 6/11/2020 7.16 7.31 7.31 1240 1340 1340 874.5 T3A 6/11/2020 7.16 7.32 7.74 7.74 1722 1830 1830 1280 T3A 6/11/2020 6.81 6.81 809.6 809.6 558.5 WML13C 5/11/2020 6.89 7.04 7.04 951 1090 1090 659.5 WML11B 2/11/2020 7.35 7.35 557.2 557.2 376.4 WML119 9/11/2020 7.32 7.73 1033 1190 1190 1290 680 WML120A 3/11/2020 7.03 7.26 7.26 758 809 809 514.5 WML120A 3/11/2020 7.03 7.26 7.26 758 809 809 514.5 WML120B 3/11/2020 6.73 6.72 6.72 472.6 546 546 466 466 27.0 WML129 9/11/2020 6.73 6.72 6.72 472.6 546 546 318 WML129 9/11/2020 6.73 6.72 6.72 472.6 546 546 318 WML129 9/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML281 3/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML281 3/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML282 9/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML282 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML282 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML282 9/11/2020 6.76 7.14 7.14 807.7 892 892 WMLP279 4/11/2020 6.99 6.99 1189 1189 882.2 WMLP277 4/11/2020 6.94 7.04 644.6 644.6 644.6 432.2 WMLP278 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP278 4/11/2020 6.94 7.04 646.6 647.7 727 727 431 WMLP279 4/11/2020 6.94 7.04 7.04 644.6 644.6 432.2 WMLP279 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP280 4/11/2020 6.80 7.18 7.18 1000 1130 1130 693 1307 WMLP303 9/11/2020 6.80 7.18 7.18 1000 1130 1130 693 1307 WMLP304 1/11/2020 6.70 6.93 6.93 6.93 795.4 912 912 544.8 WMLP305 2/11/2020 6.70 6.93 6.93 6.93 795.4 912 912 544.8 WMLP306 3/11/2020 6.70 6.80 7.18 7.19 1004 1004 1004 702 WMLP308 3/11/2020 6.75 6.96 6.97 6.97 514 592 592 348 WMLP308 3/11/2020 6.80 7.18 7.19 1004 1004 1004 702 WMLP308 3/11/2020 6.80 6.80 6.80 6.80 6.80 6.80 6.80 6.8	T2A	6/11/2020	7.06	7.22	7.22	1265	1360	1360	889.1
T3P 6/11/2020 7.29 7.29 1788 1288 1788 1288 1788 1288 1788 1288 1788 1288 1788 1288 1788 1288 1788 1288 1788 1288 1789 1749 6/11/2020 7.32 7.74 7.74 1722 1830 1830 1234 1749 6/11/2020 6.89 7.04 7.04 951 1090 1090 669.9 WML113C 5/11/2020 6.89 7.04 7.04 951 1090 1090 669.9 WML113C 2/11/2020 7.35 7.35 557.2 557.2 376.4 WML119 9/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML120B 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML120B 3/11/2020 6.78 7.03 7.26 7.26 75.8 809 809 514.3 WML120B 3/11/2020 6.78 7.03 7.04 7.26 75.8 809 809 514.3 WML120B 3/11/2020 6.78 6.70 7.09 7.96 7.96 12141 2410 2410 1562 WML129 9/11/2020 7.80 7.96 7.96 2141 2410 2410 1562 WML129 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML123B 5/11/2020 6.74 7.13 7.13 626.6 721 721 4240 WML128 3/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML123B 5/11/2020 6.74 7.13 7.13 626.6 721 721 4240 WML129 11/2020 6.76 6.74 7.13 7.13 626.6 721 721 4260 WML129 11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML123B 5/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML123B 5/11/2020 6.99 6.99 1189 1189 1189 832.2 WML127B 4/11/2020 6.99 6.99 1189 1189 1189 832.2 WML127B 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WML127B 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WML127B 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WML127B 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WML127B 4/11/2020 6.80 7.04 7.04 644.6 644.6 432.2 WML127B 4/11/2020 6.80 7.04 7.04 1084 1084 7.04 108	T2P	6/11/2020	6.61	6.9	6.90	1076	1150	1150	752.3
T4A 6/11/2020 7.16 7.31 7.31 1240 1340 1340 874.6 T4P 6/11/2020 6.81 7.6 6.81 809.6 808.6 556.6 WML113C 5/11/2020 6.89 7.04 7.04 951 1090 1090 669.9 WML115B 2/11/2020 6.80 7.04 7.04 951 1090 1090 669.9 WML115C 2/11/2020 7.35 7.35 567.2 557.2 376.4 WML119D 9/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML120A 3/11/2020 7.03 7.26 7.26 751.8 809 809 514.3 WML120A 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML129 9/11/2020 6.78 7.03 7.76 7.26 751.8 809 809 514.3 WML129 9/11/2020 6.78 7.03 7.76 7.26 2472.6 546 546 316 WML131 9/11/2020 6.78 7.03 7.73 1033 1190 1190 1562 WML131 9/11/2020 6.78 7.03 7.03 406.5 466 466 466 270 WML129 9/11/2020 6.78 7.96 7.96 2.141 2410 2410 1562 WML239 9/11/2020 6.76 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.76 7.14 7.13 626.6 721 721 426.8 WML262 9/11/2020 7.98 8.13 8.13 8.13 2502 2880 2880 1574 WML262 9/11/2020 7.98 8.13 8.13 8.13 2502 2880 2880 1578 WMLP277 4/11/2020 7.09 6.99 6.99 1189 1189 832.2 WMLP278 4/11/2020 7.04 7.04 644.6 64.6 64.6 63.2 WMLP280 4/11/2020 8.09 8.22 8.22 2672 3060 3060 2016 WMLP280 4/11/2020 8.07 8.22 8.22 2672 3060 3060 2016 WMLP30 19/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP30 19/11/2020 6.86 6.71 7.13 7.13 1058 1210 1210 738.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 1130 693.1 WMLP320 3/11/2020 6.80 7.18 7.18 1000 1130 1130 1130 693.1 WMLP321 3/11/2020 6.80 7.18 7.18 1000 1130 1130 1130 693.1 WMLP323 3/11/2020 6.85 7.17 7.17 1074 1240 1240 750 WMLP324 3/11/2020 7.04 7.04 7.04 64.6 64.6 64.8 43.2 WMLP325 3/11/2020 6.80 7.18 7.18 1000 1130 1130 1130 693.1 WMLP326 3/11/2020 6.80 7.18 7.18 7.19 1905 1905 1377 WMLP327 3/11/2020 6.87 7.37 7.37 7.37 13 1325 120 120 120 7.04 WMLP323 3/11/2020 6.86 6.97 6.97 514 592 592 348 WMLP343 3/11/2020 6.86 6.97 6.97 514 592 592 348 WMLP343 3/11/2020 6.85 6.85 50.95 509 509 343.4 WMLP349 3/11/2020 6.86 6.97 6.97 514 592 592 348 WMLP349 3/11/2020 6.86 6.97 6.97 514 592 599 509 343.4 WMLP349 3/11/2020 6.86 6.99 6.99 1040 1040 722 WMLP349 3/11/2020 6.86 6.99 6.99 1040 1040 722 WMLP349 3/11/2020 6.86 6.99 6.99 10	T3A	6/11/2020	6.79		6.79	2100		2100	1530
T4P 6/11/2020 6.81 6.81 6.81 809.6 809.6 556.8 WML13C 5/11/2020 6.89 7.04 7.04 951 1090 1090 659.8 WML11SC 5/11/2020 6.80 6.80 6.80 2408 2408 1796 WML11SC 2/11/2020 7.35 7.35 557.2 557.2 557.2 37.35 WML19S 2/11/2020 7.35 7.35 557.2 557.2 37.35 WML19D 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML19D 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML12D 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML19B 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML19B 9/11/2020 6.78 7.96 7.96 2141 2410 2410 1565 WML18B 9/11/2020 6.78 7.96 7.96 2141 2410 2410 1565 WML18B 9/11/2020 6.72 7.54 7.54 3962 4560 4560 3063 WML293 9/11/2020 6.76 7.14 7.13 7.13 626.6 721 721 426.8 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML262 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML262 9/11/2020 6.76 7.04 7.04 644.6 644.6 432.2 WMLP279 4/11/2020 6.89 7.93 8.81 8.13 2502 2880 2880 1875 WMLP279 4/11/2020 6.89 7.31 7.31 7.31 626.6 721 727 727 438 WMLP279 4/11/2020 6.89 7.31 7.31 7.31 626.6 721 727 727 438 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.0 WMLP303 3/11/2020 6.80 7.18 7.17 7.10 896.2 1030 1030 622 WMLP303 3/11/2020 6.80 7.18 7.17 7.17 1074 1240 1240 756 WMLP303 3/11/2020 6.80 6.80 6.80 33 865.5 143 83 83 83 83 83 83 83 83 83 83 83 83 83	T3P	6/11/2020	7.29		7.29	1788		1788	1280
T4P 6/11/2020 6.81 6.81 6.81 809.6 809.6 556.8 WML13C 5/11/2020 6.89 7.04 7.04 951 1090 1090 659.8 WML11SC 5/11/2020 6.80 6.80 6.80 2408 2408 1796 WML11SC 2/11/2020 7.35 7.35 557.2 557.2 557.2 37.35 WML19S 2/11/2020 7.35 7.35 557.2 557.2 37.35 WML19D 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML19D 3/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML12D 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML19B 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML19B 9/11/2020 6.78 7.96 7.96 2141 2410 2410 1565 WML18B 9/11/2020 6.78 7.96 7.96 2141 2410 2410 1565 WML18B 9/11/2020 6.72 7.54 7.54 3962 4560 4560 3063 WML293 9/11/2020 6.76 7.14 7.13 7.13 626.6 721 721 426.8 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML262 9/11/2020 6.76 7.14 7.14 807.7 892 892 556.8 WML262 9/11/2020 6.76 7.04 7.04 644.6 644.6 432.2 WMLP279 4/11/2020 6.89 7.93 8.81 8.13 2502 2880 2880 1875 WMLP279 4/11/2020 6.89 7.31 7.31 7.31 626.6 721 727 727 438 WMLP279 4/11/2020 6.89 7.31 7.31 7.31 626.6 721 727 727 438 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP279 4/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.89 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.1 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 193.0 WMLP303 3/11/2020 6.80 7.18 7.17 7.10 896.2 1030 1030 622 WMLP303 3/11/2020 6.80 7.18 7.17 7.17 1074 1240 1240 756 WMLP303 3/11/2020 6.80 6.80 6.80 33 865.5 143 83 83 83 83 83 83 83 83 83 83 83 83 83	T4A			7.31			1340		
T5									
WML113C 5/11/2020 6.89 7.04 7.04 951 1090 1090 659.8 WML115C 2/11/2020 7.35 7.35 557.2 1557.2 376.2 WML1191 941/2020 7.35 7.35 7.73 1033 1190 1190 720.2 WML120A 3/11/2020 7.30 7.26 7.51 8.8 809 809 514.3 WML120B 3/11/2020 6.73 7.26 7.51 8.8 90 809 514.3 WML121 941/2020 7.80 7.96 7.96 7.96 2141 2410 1565 WML181 941/2020 7.80 7.96 7.96 2141 2410 2410 1565 WML183 941/2020 6.74 7.13 7.13 626.6 721 721 426.5 WML183 941/2020 6.74 7.13 7.13 626.6 721 721 426.5 WML29 971/2020 6.74 7.13 7.13 626.6 721 721 426.5 WML29 971/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML282 941/2020 7.80 7.98 8.13 8.13 2502 2880 2880 1875 WML277 441/2020 6.94 7.06 7.04 644.6 644.6 644.6 432.2 WMLP279 4411/2020 6.84 7.06 7.06 455.7 727 727 431. WMLP280 441/1/2020 6.89 7.23 1.05 8.22 8.22 2672 3000 3060 2016 WMLP30 3/11/2020 6.70 7.04 7.04 644.6 644.6 432.2 WMLP30 3/11/2020 6.80 8.02 8.22 8.22 2672 3000 3060 2016 WMLP30 3/11/2020 6.70 7.04 7.04 1084 1084 1084 756 WMLP31 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP31 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP32 3/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP32 3/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP32 3/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP32 3/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP32 3/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP32 3/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP32 3/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP33 3/11/2020 6.80 6.71 6.71 7.77 1074 1240 1240 750 WMLP33 3/11/2020 6.80 6.91 6.91 1905 1377 131 153 1153 1153 806.6 WMLP33 3/11/2020 6.80 6.91 6.91 1905 1373 1153 1153 806.6 WMLP33 3/11/2020 6.80 6.90 6.90 1190 1100 1100 722 WMLP33 3/11/2020 6.80 6.90 6.90 1900 1100 1100 722 WMLP34 5/11/2020 6.80 6.90 6.90 6.90 1000 1100 1000 722 WMLP34 5/11/2020 6.80 6.90 6.90 6.90 6.90 1000 1000 1000 722 WMLP34 5/11/2020 6.80 6.90 6.90 6.90 1000 1000 1000 722 WMLP34 5/11/2020 6.80 6.90 6.90 6.90 1000 1000 1000 722 WMLP34 5/11/2020 6.80 6.80 6.80 6.80 485.6 485.6 486.8 686.6 611.2 WMLP34 1/12/2020 6.80 6.80 6.80 6.80 485.6 52.6 52.6				1.14			1000		-
WML115B				7.04			4000		
WML15C				7.04			1090		
WML119 9/11/2020 7.32 7.73 7.73 1033 1190 1190 720.2 WML120B 3/11/2020 6.78 7.03 7.26 7.26 751.8 809 809 514.3 WML1219 9/11/2020 6.78 6.72 6.72 472.6 546 466 466 270 WML1219 9/11/2020 6.73 6.72 6.72 472.6 546 546 546 318 WML181 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 426.6 WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 426.6 WML261 3/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML262 9/11/2020 6.89 6.99 1189 1189 832.2 WMLP278 4/11/2020 7.04 7.04 644.6 644.6 432.2 WMLP278 4/11/2020 6.89 6.99 1189 1189 832.2 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.80 8.22 8.22 2672 3060 3060 3060 2016 WMLP301 9/11/2020 6.80 8.22 8.22 2672 3060 3060 3060 2016 WMLP302 3/11/2020 6.80 6.84 7.06 7.04 644.6 644.6 432.2 WMLP303 3/11/2020 6.80 8.22 8.22 8.22 840 840 510.4 WMLP303 3/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP324 2/11/2020 6.80 7.10 6.93 6.93 795.4 912 912 5445 WMLP325 2/11/2020 6.80 7.10 6.93 6.93 795.4 912 912 5454 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP327 4/11/2020 6.85 6.85 1713 1153 806.6 WMLP338 3/11/2020 6.82 7.17 7.17 1074 1240 1240 726 WMLP328 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP338 3/11/2020 6.82 7.29 7.29 566 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 566 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 566 648 648 382 WMLP339 3/11/2020 6.82 7.29 7.29 566 648 648 382 WMLP349 5/11/2020 6.82 6.55 6.85 1773 377 377 274 WMLP349 5/11/2020 6.82 6.55 6.55 332.8 332.8 28.0 WMLP349 3/11/2020 6.85 6.85 6.97 6.99 1040 1040 722 WMLP339 3/11/2020 6.82 6.52 6.52 532.8 332.8 28.0 WMLP343 5/11/2020 6.85 6.85 6.85 6.85 1773 377 277 777 777 777 777 777 777 777									
WML120A 3/11/2020 7.03 7.26 7.26 751.8 809 809 514.3 WML129 9/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML129 9/11/2020 6.73 6.72 6.72 472.6 546 546 3270 WML181 9/11/2020 7.80 7.96 7.96 2141 2410 2410 1562 WML181 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML281 5/11/2020 6.76 7.14 7.13 626.6 721 721 426.8 WML282 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1878 WML277 4/11/2020 6.99 6.99 1189 1189 32.2 WMLP277 4/11/2020 6.94 7.04 7.04 644.6 644.6 432.2 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP303 2/11/2020 7.04 7.04 7.04 1084 1084 756 WMLP301 3/11/2020 6.91 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.91 6.91 6.91 1905 1905 1307 WMLP303 2/11/2020 6.91 6.91 6.91 1905 1905 1377 WMLP312 2/11/2020 6.70 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP323 2/11/2020 6.70 6.93 6.93 7.95.4 912 912 544.9 WMLP324 2/11/2020 6.70 6.82 7.1 7.10 896.2 1030 622 WMLP325 2/11/2020 7.13 7.13 1153 153 806.6 WMLP328 4/11/2020 6.82 7.1 7.17 1074 1240 1240 756 WMLP328 4/11/2020 6.85 6.87 7.19 7.17 1074 1240 1240 756 WMLP338 3/11/2020 6.85 6.87 7.29 7.29 565 648 648 382 WMLP338 3/11/2020 6.85 6.87 7.29 7.29 565 648 648 382 WMLP338 3/11/2020 6.85 6.87 7.29 7.29 565 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP346 5/11/2020 6.87 6.96 6.96 455.1 517 517 305.9 WMLP337 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.89 6.99 6.99 1040 1040 722 WMLP337 3/11/2020 6.89 6.99 6.99 1040 1040 722 WMLP338 3/11/2020 6.85 6.97 6.97 514 592 593 348 WMLP349 5/11/2020 6.85 6.65 6.97 6.97 546 2870 9870 9870 9870 9870 9870 9870 9870 9									
WML120B 3/11/2020 6.78 7.03 7.03 406.5 466 466 270 WML129 9/11/2020 6.73 6.72 6.72 472.6 546 546 316 WML131 9/11/2020 6.92 7.54 7.96 2.141 2.410 2.410 156 WML131 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.76 7.14 7.13 7.13 626.6 721 721 426.8 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML262 9/11/2020 7.04 7.04 644.6 644.6 432.2 WML277 4/11/2020 6.89 6.99 1189 WMLP278 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.87 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.80 6.74 6.74 6.74 732.2 840 840 510.4 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP303 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP304 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP303 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP328 4/11/2020 6.80 7.13 7.13 1058 2210 1300 1030 620 WMLP328 4/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP328 4/11/2020 6.71 7.13 7.13 1153 806.2 WMLP328 4/11/2020 6.71 7.13 7.13 1153 806.2 WMLP328 4/11/2020 7.13 7.17 1.10 896.2 1030 1030 620 WMLP328 4/11/2020 7.13 7.13 1153 806.2 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 7240 WMLP338 3/11/2020 6.85 6.85 1713 17131 1225 WMLP338 3/11/2020 6.85 6.97 6.97 514 592 592 348 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 7240 WMLP338 3/11/2020 6.82 7.72 7.77 7.77 7.77 7.78 7.87 2840 848 848 848 848 848 848 848 848 848	WML119	9/11/2020	7.32	7.73	7.73	1033	1190	1190	720.2
WML129 9/11/2020 6.73 6.72 6.72 47.6 546 546 318 WML181 9/11/2020 7.80 7.96 7.96 2141 2410 2410 1563 WML183 9/11/2020 6.92 7.54 7.54 3962 4560 4560 WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 428.8 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML282 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1876 WML277 4/11/2020 6.99 6.99 1189 1189 832.2 WMLP277 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.87 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP302 3/11/2020 6.80 7.18 7.18 1000 1130 130 693. WMLP303 4/11/2020 6.81 6.91 6.91 1905 1905 1377 WMLP304 4/11/2020 6.81 6.91 1905 1905 1377 WMLP320 4/11/2020 6.81 6.91 1905 1905 1377 WMLP324 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.8 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP328 4/11/2020 6.82 7.1 7.10 896.2 1030 1030 622 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP328 4/11/2020 6.85 6.82 7.1 7.17 1074 1240 1240 750 WMLP328 4/11/2020 6.85 6.85 7.18 7.19 1404 1240 750 WMLP328 4/11/2020 6.85 6.85 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.82 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.82 7.29 565 648 648 848 WMLP338 3/11/2020 6.82 7.29 7.67 7.67 2546 2870 2870 1912 WMLP338 3/11/2020 6.85 6.87 7.97 7.97 786.7 890 890 533.2 WMLP338 3/11/2020 6.82 7.29 7.66 6.96 455.1 517 517 305.8 WMLP338 3/11/2020 6.82 7.29 565 648 648 848 WMLP344 5/11/2020 6.82 7.29 7.95 565 648 648 848 WMLP348 5/11/2020 6.82 7.29 7.97 7.70 776.7 890 890 830 833.2 WMLP349 5/11/2020 6.82 7.29 565 648 648 848 WMLP349 5/11/2020 6.82 7.29 565 648 648 848.4 WMLP349 5/11/2020 6.82 7.29 565 648 648 848.4 WMLP349 5/11/2020 6.82 7.29 565 648 648 848.4 WMLP349 5/11/2020 6.82 7.29 565 648 648 848.6 WMLP349 5/11/2020 6.82 6.82 7.99 7.99 57 99.7 581.5 WMLP349 5/11/2020 6.82 6.82 6.82 89.9 1040 1040 722 WMLP349 5/11/2020 6.83 6.82 6.82 533.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 333.8 3	WML120A	3/11/2020	7.03	7.26	7.26	751.8	809	809	514.3
WML181 9/11/2020 7.80 7.96 7.96 2141 2410 2410 1563 WML183 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML295 5/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML261 3/11/2020 7.98 8.13 8.13 2502 2880 2880 1877 WML277 4/11/2020 6.99 6.99 1189 1189 332.2 WML278 4/11/2020 7.04 7.04 644.6 644.6 432.2 WML278 4/11/2020 6.97 7.31 7.31 1058 1210 1210 739.1 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 739.1 WMLP301 9/11/2020 6.80 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP323 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP324 2/11/2020 6.80 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 6.82 7.1 7.10 886.2 1030 1030 622 WMLP326 4/11/2020 6.82 7.1 7.10 886.2 1030 1030 622 WMLP327 4/11/2020 6.85 6.85 1713 1713 1225 885 WMLP328 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 7.55 WMLP328 4/11/2020 6.85 6.97 6.97 514 592 592 346 WMLP336 3/11/2020 6.82 7.12 7.17 7.17 1074 1240 1240 7.55 WMLP327 4/11/2020 6.85 6.96 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.82 7.12 7.17 7.17 1074 1240 1240 7.55 WMLP338 3/11/2020 6.82 7.12 7.17 7.17 1074 1240 1240 7.55 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP348 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.82 7.59 7.29 7.59 565 648 648 648 382 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.85 6.85 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.0	WML120B	3/11/2020	6.78	7.03	7.03	406.5	466	466	270
WML183 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 426.6 WML261 3/11/2020 6.76 7.14 7.14 80.77 892 892 556.6 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML277 4/11/2020 7.04 7.04 6.99 1189 1189 832.2 WMLP278 4/11/2020 6.84 7.06 7.06 645.7 727 727 43.1 WMLP288 4/11/2020 6.87 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP301 9/11/2020 6.80 8.02 8.22 8.22 2672 3060 3060 2016 WMLP301 9/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.81 7.17 7.10 896.2 1030 1030 620.1 WMLP323 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 620.1 WMLP324 2/11/2020 6.85 7.1 7.10 896.2 1030 1030 620.1 WMLP325 2/11/2020 6.85 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP327 4/11/2020 6.85 6.85 1713 1153 1053 806.2 WMLP328 4/11/2020 6.85 6.85 1713 1153 1153 806.6 WMLP337 3/11/2020 6.85 6.85 1713 1713 1224 WMLP338 3/11/2020 6.85 6.85 1713 1713 1224 WMLP338 3/11/2020 6.85 6.87 7.9 7.97 564 886 848 848 848 831 834 834 834 834 834 834 834 834 834 834	WML129	9/11/2020	6.73	6.72	6.72	472.6	546	546	318
WML183 9/11/2020 6.92 7.54 7.54 3962 4560 4560 3063 WML239 5/11/2020 6.76 7.14 7.13 626.6 721 721 426.6 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WML277 4/11/2020 6.99 6.99 1189 1189 832.2 WMLP278 4/11/2020 6.84 7.06 7.04 644.6 644.6 644.6 432.2 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.80 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.80 8.22 8.22 2672 3060 3060 2016 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 1905 1905 1377 WMLP320 4/11/2020 6.82 7.1 7.10 896.2 1030 1030 620 WMLP323 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 620 WMLP324 2/11/2020 6.85 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 6.85 6.85 1713 1713 1224 WMLP328 4/11/2020 6.85 6.85 1713 1713 1224 WMLP338 3/11/2020 6.85 6.85 1713 1713 1224 WMLP339 3/11/2020 6.85 6.85 1713 1713 1224 WMLP339 3/11/2020 6.85 6.85 1713 1713 1224 WMLP338 3/11/2020 6.85 6.97 6.97 5.14 592 592 344 WMLP337 3/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP338 3/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP337 3/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP343 5/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP343 5/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP346 5/11/2020 6.82 7.29 7.29 566 648 648 63 88 WMLP347 5/11/2020 6.80 7.07 7.07 776.7 890 890 533.2 WMLP348 5/11/2020 6.80 7.07 7.07 776.7 890 890 533.2 WMLP349 5/11/2020 6.81 6.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82	WML181	9/11/2020	7.80	7.96	7.96	2141	2410	2410	1563
WML239 5/11/2020 6.74 7.13 7.13 626.6 721 721 426.8 WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1876 WMLP277 4/11/2020 6.99 6.99 1189 1189 832.2 WMLP278 4/11/2020 6.84 7.06 7.06 644.6 644.6 432.2 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.48 6.74 6.74 7.04 1084 1084 756 WMLP308 2/11/2020 7.04 7.04 1084 1084 756 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.91 6.91 1905 1905 1377 WMLP323 2/11/2020 6.80 7.8 7.18 7.18 1000 1130 1130 693.1 WMLP323 2/11/2020 6.80 7.18 7.13 1153 1153 806.6 WMLP324 2/11/2020 7.04 8.02 7.1 7.10 896.2 1030 1030 622 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.12 7.17 7.17 1074 1240 1240 755 WMLP328 4/11/2020 6.85 6.85 1713 1713 1713 1225 WMLP328 4/11/2020 6.85 6.85 1713 1713 1713 1225 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.82 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 648 382 WMLP349 5/11/2020 6.84 6.84 6.84 1072 1072 7.87 WMLP388 3/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.82 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.82 6.96 5.99 1040 1040 722 WMLP349 5/11/2020 6.85 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.85 6.86 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.90 7.07 7.07 7.67 890 890 533.2 WMLP349 5/11/2020 6.85 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.99 6.99 1040 1040 722 WMLP338 1/12/2020 6.96 6.99 6.99 1040 1040 1040 722 WMLP349 1/12/20									
WML261 3/11/2020 6.76 7.14 7.14 807.7 892 892 556.5 WML262 9/11/2020 7.98 8.13 8.13 2502 2880 2880 1877 WMLP277 4/11/2020 6.99 1189 1189 332.2 WMLP278 4/11/2020 7.04 7.04 644.6 644.6 432.2 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.81 6.93 6.93 795.4 912 912 544.5 WMLP324 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP328 4/11/2020 6.85 6.85 1713 1713 1224 WMLP328 4/11/2020 6.85 6.85 1713 1713 1224 WMLP338 3/11/2020 6.85 6.85 1713 1225 855 WMLP336 3/11/2020 7.12 7.67 7.67 2546 2870 2870 1912 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP346 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP346 5/11/2020 6.82 7.29 7.29 565 648 648 383 642 WMLP346 5/11/2020 6.82 7.29 7.29 565 648 648 383 642 WMLP346 5/11/2020 6.82 6.82 7.29 7.29 565 648 648 383 642 WMLP346 5/11/2020 6.82 7.29 7.29 565 648 648 383 648 383 648 848 848 848 848 848 848 848 848 848									
WMLP277 4/11/2020 7.98 8.13 8.13 2502 2880 2880 1875 WMLP278 4/11/2020 6.99 6.99 1189 1189 1189 832.2 WMLP278 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.87 7.31 7.31 1058 1210 1210 7381 WMLP301 9/11/2020 6.80 6.74 6.74 732.2 840 840 510.4 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 7.04 7.04 1084 1084 750 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 1905 1905 1377 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.8 WMLP324 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 885 WMLP327 4/11/2020 6.85 6.85 1713 1713 1225 WMLP328 4/11/2020 6.85 6.85 1713 1713 1225 WMLP338 3/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 343 1834 WMLP349 5/11/2020 6.82 7.29 7.29 565 648 648 343 1834 WMLP349 5/11/2020 6.91 6.91 6.96 6.95 6.95 1733 1733 1733 1733 1733 1734 1734 1734									
WMLP277 4/11/2020 6.99 6.99 1189 1189 832.2 WMLP278 4/11/2020 7.04 7.04 644.6 WMLP278 4/11/2020 6.84 7.06 7.06 645.7 727 727 43.3 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP324 4/11/2020 6.91 6.91 1905 1905 1905 1905 WMLP324 2/11/2020 6.82 7.1 7.10 886.2 1030 1030 622 WMLP323 2/11/2020 7.13 7.13 1153 1153 1153 WMLP325 2/11/2020 7.13 7.13 1153 1153 1153 WMLP326 4/11/2020 6.85 6.85 1713 1153 1153 1153 WMLP327 4/11/2020 6.85 6.85 1713 1225 1225 855 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 1834 WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 1834 WMLP338 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP346 5/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.84 6.76 6.76 843.7 957 957 581.5 WMLP338 3/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.84 6.84 1072 1072 747 WMLP338 1/12/2020 6.89 6.99 1040 1040 722 WMLP338 1/12/2020 6.89 6.99 1040 1040 722 WMLP338 1/12/2020 6.89 6.99 1040 1040 722 WMLP338 1/12/2020 6.89 6.89 485.6 485.6 485.6 635.6									
WMLP278 4/11/2020 7.04 7.04 644.6 644.6 432.2 WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 7.04 7.04 1084 1084 756 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 1905 1905 1307 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP332 2/11/2020 7.13 7.13 1153 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 6.85 6.85 1713 1125 1225 855 WMLP328 4/11/2020 6.85 6.85 1713 1225 1225 855 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 756 WMLP328 4/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 383 WMLP348 5/11/2020 6.75 6.96 6.96 455.1 517 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.87 6.97 7.07 7.07 7.67 890 890 533.2 WMLP348 5/11/2020 6.87 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.87 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP336 3/12/2020 6.70 6.70 7.07 7.07 7.67 890 890 533.2 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.9 WMLP336 3/12/2020 6.70 6.70 7.07 7.07 7.67 890 890 533.2 WMLP346 5/11/2020 6.89 6.99 1040 1040 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7				8.13			2880		
WMLP279 4/11/2020 6.84 7.06 7.06 645.7 727 727 431 WMLP280 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP301 9/11/2020 6.802 8.22 8.22 2672 3060 3060 2016 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 7.04 7.04 1084 1084 750 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.91 6.91 1905 1905 1377 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.8 WMLP324 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 850 WMLP327 4/11/2020 6.85 6.85 6.85 1713 1713 1225 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 WMLP349 5/11/2020 6.82 6.82 1834 1834 1834 WMLP349 5/11/2020 6.82 6.82 6.85 1655 648 648 648 382 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP358 5/11/2020 6.97 7.07 7.07 7.76 7.89 990 890 533.2 WMLP349 5/11/2020 6.90 7.07 7.07 7.76 7.89 890 890 890 WMLP358 5/11/2020 6.90 7.07 7.07 7.07 7.67 7.67 7.67 2546 2870 2870 1912 WMLP358 5/11/2020 6.82 6.96 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.82 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.97 7.07 7.07 7.07 7.67 7.89 90 890 890 890 890 890 890 890 890 89									
WMLP301 4/11/2020 6.97 7.31 7.31 1058 1210 1210 738.1 WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 6.48 6.74 7.04 1084 1084 756 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP312 2/11/2020 6.91 6.91 1905 1905 1905 1377 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.8 WMLP324 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 692.0 WMLP325 2/11/2020 7.13 7.13 1153 1153 1153 806.2 WMLP326 4/11/2020 7.13 7.13 1153 1153 1153 806.2 WMLP327 4/11/2020 6.85 6.85 1713 1153 1153 806.2 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.85 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 7.12 7.67 7.67 2546 2870 2870 1912 WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 1834 1834 1834 1834 1834			7.04		7.04	644.6		644.6	
WMLP301 9/11/2020 8.02 8.22 8.22 2672 3060 3060 2016 WMLP308 2/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP323 2/11/2020 6.80 7.1 7.10 896.2 1030 1030 602 WMLP324 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1125 1225 855 WMLP327 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 7.12 7.67 7.67 2546	WMLP279		6.84	7.06	7.06	645.7	727	727	431
WMLP302 3/11/2020 6.48 6.74 6.74 732.2 840 840 510.4 WMLP308 2/11/2020 7.04 7.04 1084 1084 750.4 WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 1905 1377 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.8 WMLP324 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 620 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 850 WMLP326 4/11/2020 7.13 7.13 1225 1225 850 WMLP327 4/11/2020 6.85 6.85 6.70 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP343 5/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.75 6.96 6.96 495.1 517 517 305.5 WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 WMLP358 5/11/2020 6.90 7.07 7.07 7.76.7 890 890 533.2 RSGM1 3/11/2020 6.84 6.84 1072 1074 724 WMLP338 3/11/2020 6.90 7.07 7.07 7.76.7 890 890 533.2 RSGM1 3/11/2020 6.84 6.84 1072 1074 724 WMLP338 3/11/2020 6.99 6.99 6.99 485.1 617 1074 724 WMLP338 3/11/2020 6.99 6.99 1040 1040 722 WMLP338 3/11/2020 6.84 6.84 1072 1072 747 WMLP338 3/11/2020 6.85 6.55 509 509 343.4 WMLP338 3/11/2020 6.89 6.99 1040 1040 722 WMLP338 3/11/2020 6.85 6.52 6.52 509 509 349.4 WMLP338 3/11/2020 6.85 6.52 6.52 509 509 349.4 WMLP349 1/11/2020 6.85 6.52 6.52 509 509 349.4 WMLP349 1/11/2020 6.86 6.66 6.66 1320 1320 925.6 WMLP349 1/11/2020 6.86 6.62 939.3 939.3 693.6 WMLP349 1/11/2020 6.82 6.62 790.7 7	WMLP280	4/11/2020	6.97	7.31	7.31	1058	1210	1210	738.1
WMLP311 2/11/2020 6.80 7.18 7.04 1084 1084 756 WMLP320 4/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 9.95 1905 1379 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP324 2/11/2020 7.13 7.10 896.2 1030 1030 692.0 WMLP326 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 856 WMLP327 4/11/2020 7.13 7.13 1225 1225 856 WMLP327 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP337 3/11/2020 6.62 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 VAPD16 1/12/2020 6.99 6.99 1040 1040 722 VAPD16 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP338 1/12/2020 6.52 6.52 509 509 343.4 WMLP349 1/12/2020 6.89 6.89 6.89 485.6 485.6 326.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 322.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 322.8 WMLP349 1/12/2020 6.89 6.89 6.89 485.6 485.6 326.8 WMLP349 1/12/2020 6.87 6.57 855.6 509 509 343.4 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 522.6 351.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 522.6 351.8 WMLP349 1/12/2020 6.87 6.57 855.6 580.5 580.5 382.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 561.2 56	WMLP301	9/11/2020	8.02	8.22	8.22	2672	3060	3060	2016
WMLP311 2/11/2020 6.80 7.18 7.04 1084 1084 756 WMLP320 4/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 9.95 1905 1379 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 544.5 WMLP324 2/11/2020 7.13 7.10 896.2 1030 1030 692.0 WMLP326 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 856 WMLP327 4/11/2020 7.13 7.13 1225 1225 856 WMLP327 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP337 3/11/2020 6.62 6.97 6.97 514 592 592 346 WMLP338 3/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP348 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 VAPD16 1/12/2020 6.99 6.99 1040 1040 722 VAPD16 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP338 1/12/2020 6.52 6.52 509 509 343.4 WMLP349 1/12/2020 6.89 6.89 6.89 485.6 485.6 326.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 322.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 322.8 WMLP349 1/12/2020 6.89 6.89 6.89 485.6 485.6 326.8 WMLP349 1/12/2020 6.87 6.57 855.6 509 509 343.4 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 522.6 351.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 522.6 351.8 WMLP349 1/12/2020 6.87 6.57 855.6 580.5 580.5 382.8 WMLP349 1/12/2020 6.89 6.89 6.89 356.2 522.6 522.6 561.2 56	WMLP302	3/11/2020	6.48	6.74	6.74	732.2	840	840	510.4
WMLP311 2/11/2020 6.80 7.18 7.18 1000 1130 1130 693.1 WMLP320 4/11/2020 6.91 6.91 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1937 1912 544.8 244.9 1912 544.8 194 1912 544.8 194 1912 544.8 194 1912 544.8 194 1912 544.8 194 1912 544.8 194 1912 544.8 194 1912 544.8 194 1942 240 267 194 244 1940 254 2870 2870 1912 1942									756
WMLP320 4/11/2020 6.91 6.93 6.91 1905 1377 WMLP323 2/11/2020 6.70 6.93 6.93 795.4 912 912 54.2 WMLP324 2/11/2020 7.13 7.13 1153 1030 1030 62.2 WMLP325 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1125 1225 806.6 WMLP327 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 344 WMLP333 3/11/2020 6.82 6.82 1834 1834 1834 WMLP343 5/11/2020 6.82 7.29 565 648 648 348 WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 W				7.18			1130		693.1
WMLP323 2/11/2020 6.70 6.93 795.4 912 912 544.5 WMLP324 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 60.9 WMLP326 2/11/2020 7.13 7.13 1153 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 858 WMLP327 4/11/2020 6.85 6.85 1713 1713 1713 1722 WMLP328 4/11/2020 6.65 6.97 6.97 514 592 592 348 WMLP336 3/11/2020 6.65 6.97 6.97 514 592 592 348 WMLP337 3/11/2020 6.62 6.82 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1834 1832 1834 1841/2020 6.62 6.9									
WMLP324 2/11/2020 6.82 7.1 7.10 896.2 1030 1030 620 WMLP325 2/11/2020 7.13 7.13 1153 1153 8620 WMLP326 4/11/2020 7.13 7.13 1153 1153 8650 WMLP327 4/11/2020 6.85 6.85 1713 11252 1225 855 WMLP327 4/11/2020 6.85 6.85 1713 1224 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 7240 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 346 WMLP337 3/11/2020 7.12 7.67 7.67 2546 2870 2870 1912 WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 WMLP348 5/11/2020 6.82 7.29 7.29 565 648 648 338 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.76 6.71 6.71 323.3 371 371 271 WMLP358 5/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 YAPO16 1/12/2020 6.84 6.84 1072 1072 747 WMLP336 3/12/2020 7.10 7.10 2496 2496 1873 WMLP337 3/12/2020 6.52 6.52 509 509 348.8 WMLP349 1/12/2020 6.89 6.89 485.6 485.6 2486.6 328.8 WMLP338 1/12/2020 6.52 6.52 509 509 332.8 WMLP348 1/12/2020 6.89 6.89 8456.6 856.6 246.6 485.6 326.8 WMLP338 1/12/2020 6.55 6.25 509 509 332.8 WMLP348 1/12/2020 6.57 6.57 6.57 885.6 885.6 616.6 WMLP349 1/12/2020 6.89 6.89 485.6 485.6 326.8 WMLP346 1/12/2020 6.89 6.89 5532.8 WMLP348 1/12/2020 6.89 6.89 5532.8 WMLP349 1/12/2020 6.80 6.89 6.89 345.6 485.6 326.8 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 522.6 WMLP349 1/12/2020 6.86 6.82 522.6 522.6 522.6 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 522.6 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 522.6 WMLP349 1/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP328 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP328 2/12/2020 6.89 6.89 6.89 1182 1182 828.3 WMLP349 3/12/2020 6.89 6.89 6.89 1182 1182 828.3 WMLP340 3/12/2020 6.80 6.80 6.80 6.80 1182 1182 828.3				6.03			012		
WMLP325 2/11/2020 7.13 7.13 1153 806.6 WMLP326 4/11/2020 7.13 7.13 1225 1225 806.6 WMLP327 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP338 3/11/2020 6.65 6.97 6.97 514 592 592 394 WMLP338 3/11/2020 6.82 6.82 1834									
WMLP326 4/11/2020 7.13 7.13 1225 1225 858 WMLP327 4/11/2020 6.85 7.13 1225 1225 858 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 724 WMLP336 3/11/2020 7.12 7.67 7.67 2546 2870 297 912 WMLP337 3/11/2020 6.82 6.82 1834 <t< td=""><td></td><td></td><td></td><td>7.1</td><td></td><td></td><td>1030</td><td></td><td></td></t<>				7.1			1030		
WMLP327 4/11/2020 6.85 6.85 1713 1713 1224 WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 726 WMLP336 3/11/2020 7.12 7.67 6.97 6.97 514 652 592 348 WMLP337 3/11/2020 6.82 6.82 1834 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1841/2020 6.76 6.76 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
WMLP328 4/11/2020 7.12 7.17 7.17 1074 1240 1240 750 WMLP336 3/11/2020 6.65 6.97 514 592 592 592 394 WMLP337 3/11/2020 6.82 6.82 1834 1832 1822									
WMLP336 3/11/2020 6.65 6.97 6.97 514 592 592 348 WMLP337 3/11/2020 7.12 7.67 7.67 2546 2870 2870 1912 WMLP333 3/11/2020 6.82 6.82 1834 18148 1805 1845 1805 1845 1815 185 185 185 185 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818 1818				_					
WMLP337 3/11/2020 7.12 7.67 7.67 2546 2870 2870 1912 WMLP338 3/11/2020 6.82 6.82 1834 1848 1848 1848 1844 1844 1844 1845 1848 1848 1848 1848 1848 1848 1848 1848 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 1844 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WMLP338 3/11/2020 6.82 6.82 1834 1834 1834 WMLP348 5/11/2020 6.82 7.29 565 648 648 383 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.8 WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 WMLP358 5/11/2020 6.27 6.71 6.71 323.3 371 371 214.4 YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 72 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 6.52 6.52 509 509 343.4 WMLP338 3/12/2020 6.52 6.52 509 509 343.4 WML293 1/12									
WMLP343 5/11/2020 6.82 7.29 7.29 565 648 648 382 WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 308 WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.9 WMLP358 5/11/2020 6.97 6.71 6.71 323.3 371 371 214.4 YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP336 3/12/2020 6.84 6.84 1072 1072 747 WMLP336 3/12/2020 6.89 6.89 485.6 485.6 326.8 WML129 3/12/2020 6.89 6.89 485.6 485.6 328.8 W				7.67			2870		1912
WMLP346 5/11/2020 6.75 6.96 6.96 455.1 517 517 305.5 WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 WMLP385 5/11/2020 6.27 6.71 6.71 323.3 371 371 371 395 581.5 RSGM1 3/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WML129 3/12/2020 6.89 6.89 485.6 485.6 328.8 WMLP358 1/12/2020 6.25 6.25 332.8 332.8 20.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1834</td></td<>									1834
WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 WMLP358 5/11/2020 6.27 6.71 6.71 323.3 371 371 371 214.3 YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 534.2 RSGM1 3/11/2020 6.99 0.00 818.8 818.8 818.8 RA18 4/11/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 348.6 WMLP336 3/12/2020 6.52 6.52 509 509 348.6 WML293 1/12/2020 6.25 6.25 332.8 332.8 202.8 WML239 1/12/2020 6.25 6.25 332.8 332.8 20.8 WMLP346 1/12/2020 6.82	WMLP343	5/11/2020	6.82	7.29	7.29	565	648	648	382
WMLP349 5/11/2020 6.44 6.76 6.76 843.7 957 957 581.5 WMLP358 5/11/2020 6.27 6.71 6.71 323.3 371 371 371 214.3 YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 534.2 RSGM1 3/11/2020 6.99 0.00 818.8 818.8 818.8 RA18 4/11/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 348.6 WMLP336 3/12/2020 6.52 6.52 509 509 348.6 WML293 1/12/2020 6.25 6.25 332.8 332.8 202.8 WML239 1/12/2020 6.25 6.25 332.8 332.8 20.8 WMLP346 1/12/2020 6.82	WMLP346	5/11/2020	6.75	6.96	6.96	455.1	517	517	305.9
WMLP358 5/11/2020 6.27 6.71 6.71 323.3 371 371 214.4 YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 0.00 818.8 818.8 818.8 RA18 4/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP336 3/12/2020 7.10 7.10 2496 2496 1837 WML1293 3/12/2020 6.52 6.52 509 509 343.4 WML1293 3/12/2020 6.89 6.89 485.6 485.6 326.8 WML1293 1/12/2020 6.25 6.25 332.8 230.8 332.8 220.8 WMLP349 1/12/2020 6.83 6.83 584.2 564.2 456.4 249.6 WMLP349 1/12/2020 6.82 6.8						843.7			581.9
YAP016 2/11/2020 6.90 7.07 7.07 776.7 890 890 533.2 RSGM1 3/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WMLP388 1/12/2020 6.89 6.89 485.6 485.6 326.8 WMLP389 1/12/2020 6.83 6.83 564.2 564.2 464.2 WMLP349 1/12/2020 6.57 6.57 857.8 885.6 85.6 611.6 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 351.8 WMLP349 1/12/2020 6.82 6.82 593.3 393.3 39	WMLP358	5/11/2020	6.27	6.71		323.3	371	371	214.4
RSGM1 3/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 343, WML129 3/12/2020 6.25 6.25 332.8 332.8 220.8 WML293 1/12/2020 6.25 6.25 332.8 332.8 220.8 WML293 1/12/2020 6.83 6.83 564.2 564.2 465.4 WML293 1/12/2020 6.85 6.25 509.5 WML239 1/12/2020 6.85 6.25 332.8 332.8 32.8 WMLP346 1/12/2020 6.85 6.25 332.8 332.8 20.8 WMLP348 1/12/2020 6.87 6.57 885.6 885.6 611.6 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 522.6 WMLP343 1/12/2020 6.82 6.82 522.6 522.6 522.6 WMLP343 1/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP312 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.3 WMLP310 3/12/2020 7.01 7.01 967.1 967.1 671.6 71.6 WMLP280 3/12/2020 7.01 7.01 967.1 967.1 671.6 WML120B 3/12/2020 7.07 6.70 410.2 410.2 274.4 WML120B 3/12/2020 7.01 6.70 6.70 410.2 410.2 274.4									533.2
RA18 4/11/2020 6.99 6.99 1040 1040 722 YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WML129 3/12/2020 6.55 6.25 509 509 345.4 WML129 3/12/2020 6.25 6.25 332.8 332.8 282.8 WML239 1/12/2020 6.25 6.25 332.8 332.8 282.8 WML239 1/12/2020 6.83 6.83 564.2 564.2 445.4 WMLP349 1/12/2020 6.57 6.57 885.6 885.6 611.6 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 351.6 WMLP349 1/12/2020 6.62 6.82 522.6 522.6 351.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 380.5 WMLP343 1/12/2020 7.07 7.07 1133 1133 123 292.6 WMLP311 2/12/2020 7.07 7.07 1133 1133 1133 793.6 WMLP328 2/12/2020 7.07 7.07 1469 1469 1046 WMLP379 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP279 2/12/2020 6.89 6.89 1182 1182 825.4 WMLP310 2/12/2020 7.01 7.01 967.1 967.1 671.6 WMLP310 2/12/2020 7.01 7.01 967.1 967.1 671.6 WMLP310 3/12/2020 7.01 7.01 967.1 967.1 671.6 WMLP310 2/12/2020 7.01 7.01 967.1 967.1 671.6 WMLP310 3/12/2020 7.01 7.01 967.1 967.1 671.6 WML1208 3/12/2020 6.70 6.70 410.2 410.2 274.4									
YAP016 1/12/2020 6.84 6.84 1072 1072 747 WMLP337 3/12/2020 7.10 7.10 2496 2496 1872 WMLP338 3/12/2020 6.52 6.52 509 509 343.4 WML129 3/12/2020 6.89 6.89 485.6 485.6 326.8 WMLP358 1/12/2020 6.25 6.25 332.8 332.8 220.8 WMLP349 1/12/2020 6.83 6.83 564.2 564.2 564.2 564.2 485.6 611.6 WMLP349 1/12/2020 6.87 6.57 6.57 885.6 885.6 611.6 611.6 WMLP348 1/12/2020 6.82 6.82 522.6 522.6 351.6 611.6 <td></td> <td></td> <td>6.99</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>722</td>			6.99						722
WMLP337 3/12/2020 7.10 7.10 2496 2496 1873 WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WMLP358 1/12/2020 6.25 6.25 332.8 332.8 220.8 WML239 1/12/2020 6.83 6.83 564.2 564.2 465.4 WMLP349 1/12/2020 6.82 6.82 522.6 522.6 351.6 WMLP346 1/12/2020 6.82 6.82 522.6 522.6 351.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 392.5 WMLP312 2/12/2020 6.62 6.62 939.3 393.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10									
WMLP336 3/12/2020 6.52 6.52 509 509 343.4 WML129 3/12/2020 6.89 6.89 485.6 485.6 326.8 WMLP368 1/12/2020 6.25 6.25 332.8 332.8 220.8 WML239 1/12/2020 6.83 6.83 564.2 564.2 445.4 WMLP349 1/12/2020 6.57 6.57 885.6 885.6 611.6 WMLP348 1/12/2020 6.82 6.62 522.6 552.6 552.6 580.5 392.5 WMLP343 1/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP312 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1469 1469 1044									
WML129 3/12/2020 6.89 6.89 485.6 485.6 326.8 WMLP358 1/12/2020 6.25 6.25 332.8 232.8 332.8 232.8 WMLP349 1/12/2020 6.83 6.83 564.2 564.2 445.4 WMLP349 1/12/2020 6.57 6.57 885.6 885.6 611.6 WMLP346 1/12/2020 6.82 6.82 522.6 52.6 52.6 351.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 580.5 580.5 391.6 WMLP323 2/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.7 RM10 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.82 6.82 790.7									
WMLP358 1/12/2020 6.25 6.25 332.8 332.8 220.8 WML239 1/12/2020 6.83 6.83 564.2 564.2 445.4 564.2 WMLP349 1/12/2020 6.57 6.57 885.6 885.6 885.6 611.6 WMLP346 1/12/2020 6.82 6.82 522.6 522.6 522.6 351.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 392.5 WMLP343 1/12/2020 6.62 6.62 6.62 939.3 393.9 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1499 1469 1469 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.3 WMLP280 2/12/2020 7.01 7.01 967.1 967.1 967.1 WML130 3/12/2020 7.01 7.01 967.1 967.1 967.1 WML130 3/12/2020 6.70 6.70 470.2 410.2 274.4 WML1208 3/12/2020 6.70 6.70 470.2 410.2 274.4									
WML239 1/12/2020 6.83 6.83 564.2 564.2 445.4 WMLP349 1/12/2020 6.57 6.57 885.6 885.6 611.6 WMLP346 1/12/2020 6.82 6.82 522.6 522.6 525.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 580.5 WMLP323 2/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 926.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1469 1469 1046 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.3 WML130B 3/12/2020 7.01 7.01 7.01 967.1 967.1 671.4									
WMLP349 1/12/2020 6.57 6.57 885.6 885.6 611.6 WMLP346 1/12/2020 6.82 6.82 522.6 522.6 552.6 352.5 WMLP343 1/12/2020 7.10 7.10 580.5 392.5 WMLP323 2/12/2020 6.62 6.62 999.3 999.3 999.3 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 1133 1133 193.7 790.7 RM10 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.5 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									
WMLP346 1/12/2020 6.82 6.82 522.6 522.6 351.6 WMLP343 1/12/2020 7.10 7.10 580.5 580.5 392.5 WMLP323 2/12/2020 6.62 6.62 939.3 393.3 651.6 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.5 WMLP30 2/12/2020 7.01 7.01 967.1 967.1 967.1 WML130B 3/12/2020 6.70 6.70 470.2 410.2 274.4									
WMLP343 1/12/2020 7.10 7.10 580.5 580.5 392.5 WMLP323 2/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1469 1469 1040 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 182 WML13C 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									611.6
WMLP323 2/12/2020 6.62 6.62 939.3 939.3 651.4 WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1469 1469 104c WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.3 WML1302 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4	WMLP346	1/12/2020	6.82		6.82	522.6		522.6	351.6
WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 7928.6 RM10 2/12/2020 7.07 7.07 1469 1469 1040 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.5 WML13C 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4	WMLP343	1/12/2020	7.10		7.10	580.5		580.5	392.5
WMLP311 2/12/2020 6.66 6.66 1320 1320 928.6 WMLP328 2/12/2020 7.07 7.07 1133 1133 7928.6 RM10 2/12/2020 7.07 7.07 1469 1469 1040 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 828.5 WML130C 2/12/2020 7.01 7.01 967.1 967.1 967.1 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4	WMLP323	2/12/2020	6.62		6.62	939.3		939.3	651.4
WMLP328 2/12/2020 7.07 7.07 1133 1133 792.1 RM10 2/12/2020 7.07 7.07 1469 1469 1040 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 11182 340.2 WML130 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									928.6
RM10 2/12/2020 7.07 7.07 1469 1469 1040 WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 1182 1182 671.4 WML130C 2/12/2020 7.01 7.01 967.1 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									792.1
WMLP279 2/12/2020 6.82 6.82 790.7 790.7 543.5 WMLP280 2/12/2020 6.89 6.89 1182 1182 1182 1182 671.4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
WMLP280 2/12/2020 6.89 6.89 1182 1182 828.3 WML113C 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									
WML113C 2/12/2020 7.01 7.01 967.1 967.1 671.4 WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									
WML120B 3/12/2020 6.70 6.70 410.2 410.2 274.4									
T2A 2/12/2020 7.08 7.08 1256 1256 881.4									274.4
		2/12/2020	7.08		7.08	1256		1256	881.4

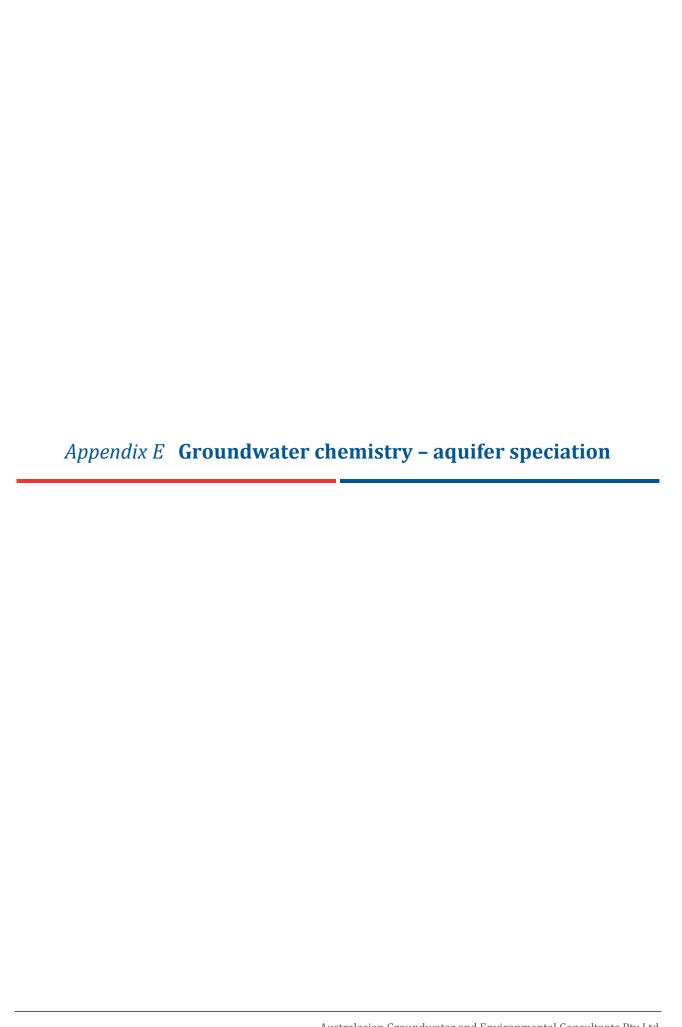
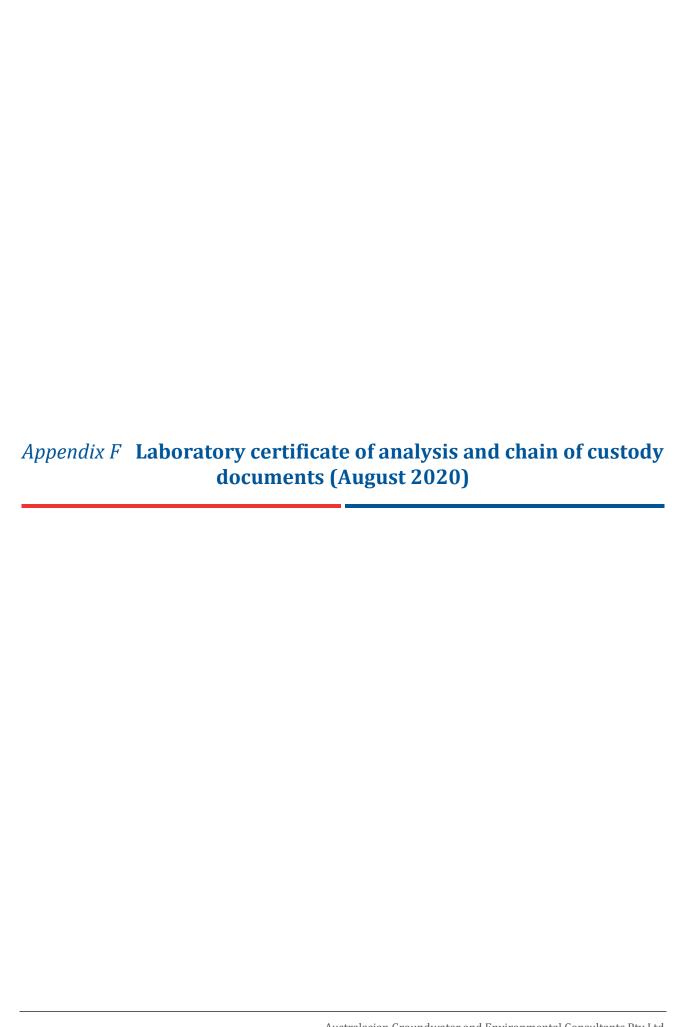



 Table E1
 August 2020 Ashton monitoring bore water classifications

Table E1	August 2020 A	sitton monitoring bore water	
Bore ID	Geology	Individual Water Type	General Water Type
T5		Na-Ca-Cl-SO4-HCO3	
WML113C		Na-Ca-Mg-Cl-SO4	
Ashton well	BCA	Na-Ca-Mg-HCO3-Cl-SO4	
T2A	DCA	Na-Ca-Mg-SO4-Cl	
WMLP320			
WMLP328		Na-Ca-Mg-SO4-Cl	
WMLP325		Na-Ca-Cl-HCO3	
WMLP327		Na-Ca-Cl-HCO3	
RM10	CMOB	Na-Ca-Mg-Cl-SO4	Na-Ca
WMLP336		Na-Ca-Mg-HCO3-Cl	
WMLP324		Na-Ca-Mg-SO4-Cl-HCO3	
WML129		Na-Ca-Mg-Cl-HCO3	
WML239		Na-Ca-Mg-Cl-HCO3	
WMLP349	GCA	Na-Ca-Mg-Cl-HCO3	
WMLP343		Na-Ca-Mg-HCO3-Cl	
WMLP346		Na-Ca-Mg-HCO3-Cl	
WMLP279	HRA	Na-Ca-Mg-Cl-HCO3-SO4	
T2P	CMOB	Ca-Na-Mg-Cl-SO4-HCO3	
WMLP358	GCA	Ca-Na-Mg-HCO3-Cl	Ca-Na
PB1	BCA	Ca-Na-Mg-SO4-Cl	
T4A	D.C.A	Na-Cl-HCO3	
WMLP326	BCA	Na-Cl-HCO3	
T3P	01/05	Na-Cl-HCO3	
T4P	CMOB	Na-Cl-HCO3	
WML181		Na-Cl-HCO3	Na-Cl
WMLP301	Coal	Na-Cl-HCO3	
WML115B		Na-Cl-HCO3-SO4	
RA27		Na-Cl-HCO3	
WMLP277	HRA	Na-Cl-HCO3	
WMLP308		Na-Mg-Ca-Cl-SO4-HCO3	
WMLP323		Na-Mg-Ca-SO4-HCO3-Cl	
T3A	BCA	Na-Mg-Cl	
WMLP311		Na-Mg-Cl-SO4-HCO3	
WML120A		Na-Mg-Ca-HCO3-Cl	
GM1		Na-Mg-Cl-HCO3	
WML183	Coal	Na-Mg-Cl-HCO3	Na-Mg
WML261	cour	Na-Mg-Cl-HCO3	110 1115
WMLP302		Na-Mg-Cl-HCO3	
WML120B	GCA	Na-Mg-Ca-HCO3-Cl	
WMLP280	GOI.	Na-Mg-Ca-Cl-HCO3	
WMLP338	HRA	Na-Mg-Ca-Cl-HCO3	
WMLP337	HILL	Na-Mg-Cl-HCO3	
WML1357 WML115C	BCA	Na-HCO3	
WML113C WML119	DUA	Na-HCO3-Cl	
WML262	Coal	Na-HCO3-Cl	Na-HCO3
WMLP278	HRA	Na-HCO3-Cl	
YAP016	BCA	Na-SO4-Cl-HCO3	Na-SO4
1M1 010	DCA	1va-304-G-11603	เงล-งบช

Figure E1 August 2020 Ashton monitoring bore Piper Diagram

CERTIFICATE OF ANALYSIS

Work Order : **ES2028057** Page : 1 of 22

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL Laboratory : Environmental Division Sydney

CONSULTANTS PTY LTD

Contact : BRYCE McKAY Contact : Customer Services ES

Address : 4 HUDSON STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

HAMILTON NSW 2303

Project : G1922K Ashton Annual Sampling Date Samples Received : 12-Aug-2020 11:55

 Order number
 : -- Date Analysis Commenced
 : 13-Aug-2020

 C-O-C number
 ! ssue Date
 : 19-Aug-2020 17:29

Sampler : Glen Brumm

Site · ----

Ouete number

Quote number : EN/222

No. of samples received : 48

No. of samples analysed : 48

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

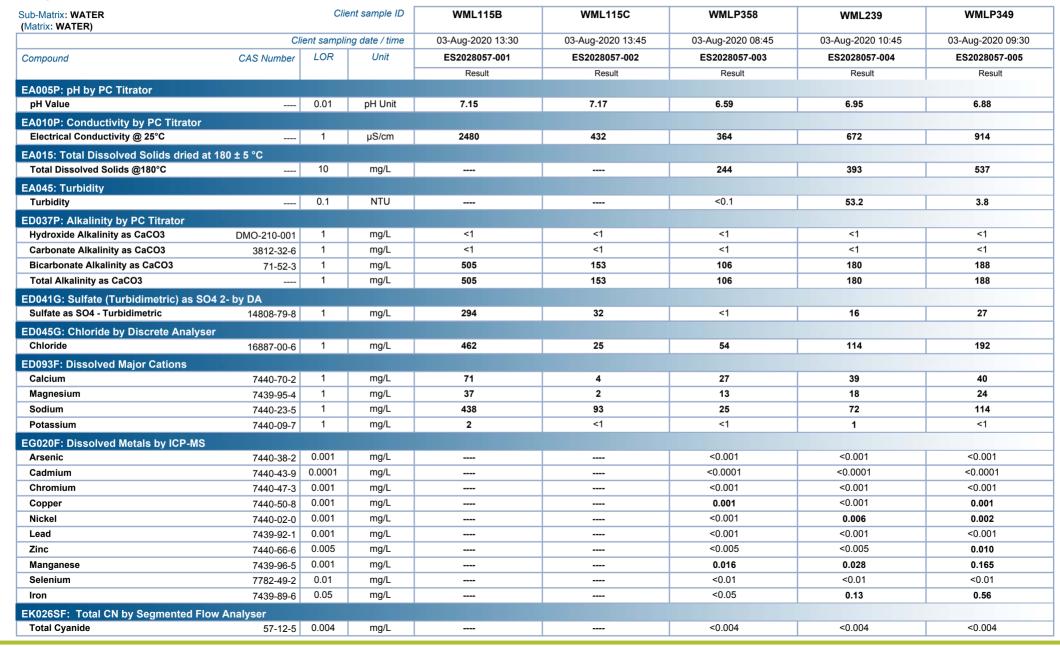
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EN055: Ionic Balance out of acceptable limits for sample ES2028057-#012 due to analytes not quantified in this report.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 22 Work Order : ES2028057

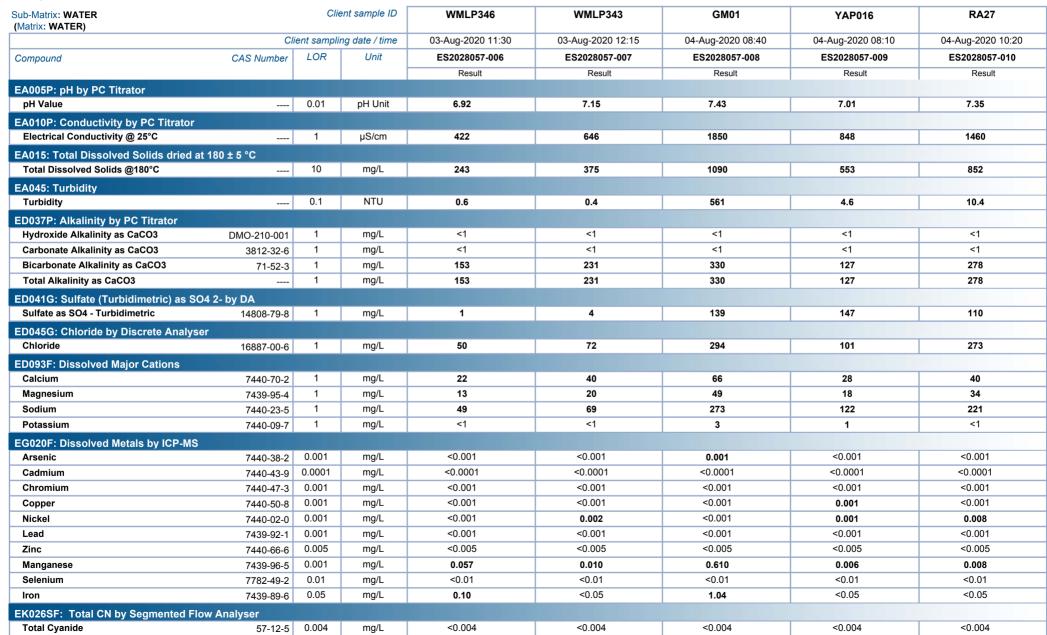
Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Page : 4 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

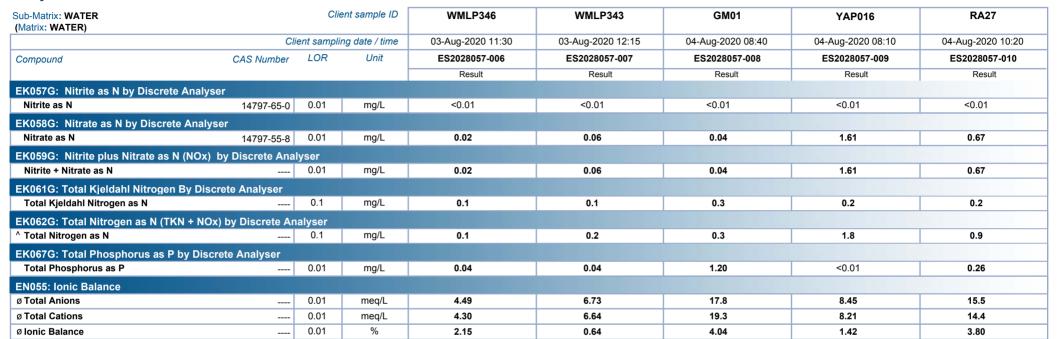
Project : G1922K Ashton Annual Sampling



Page : 5 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

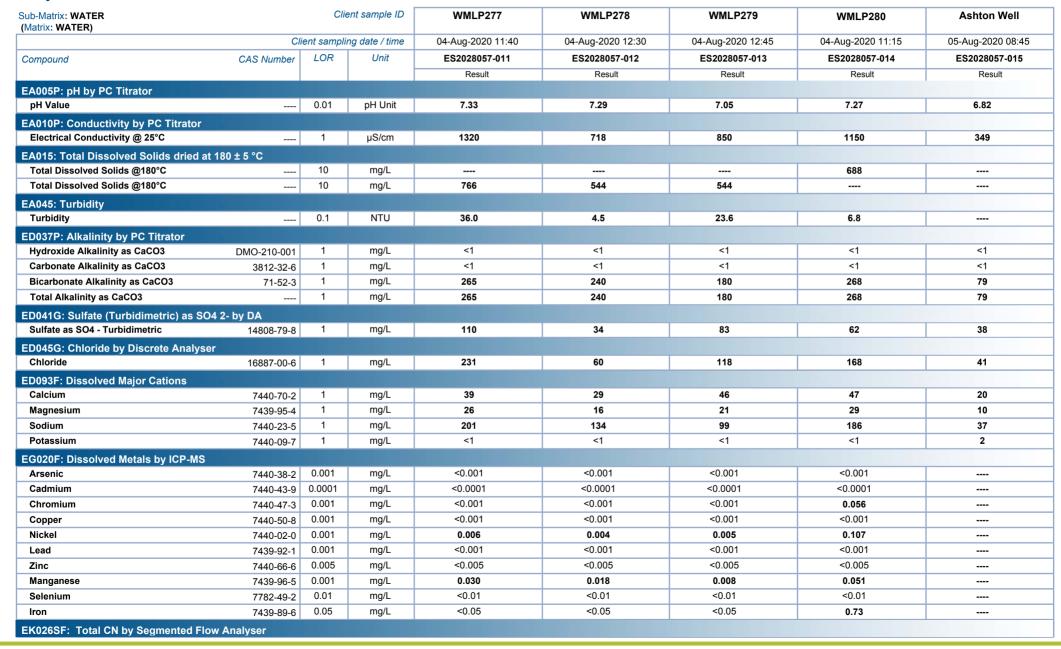
Project : G1922K Ashton Annual Sampling



Page : 6 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling



Page : 7 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Page : 8 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

0.01

0.01

0.01

0.01

mg/L

meg/L

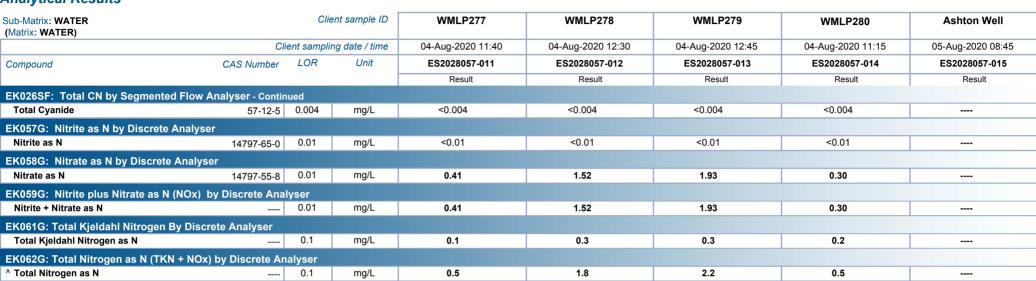
meq/L

%

Project : G1922K Ashton Annual Sampling

EK067G: Total Phosphorus as P by Discrete Analyser

Analytical Results


Total Phosphorus as P

EN055: Ionic Balance

Ø Total Anions

ø Total Cations

Ø Ionic Balance

0.07

7.20

8.59

8.85

0.09

8.65

8.33

1.90

0.12

11.4

12.8

5.94

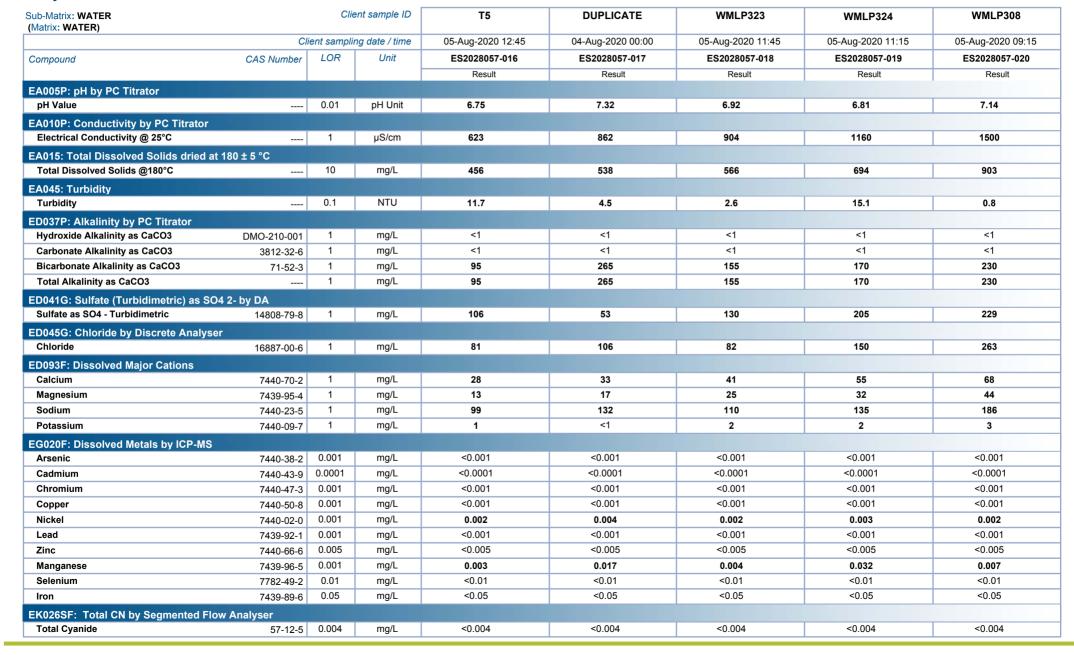
0.22

14.1

12.8

4.72

3.53


3.48

0.64

Page : 9 of 22 Work Order : ES2028057

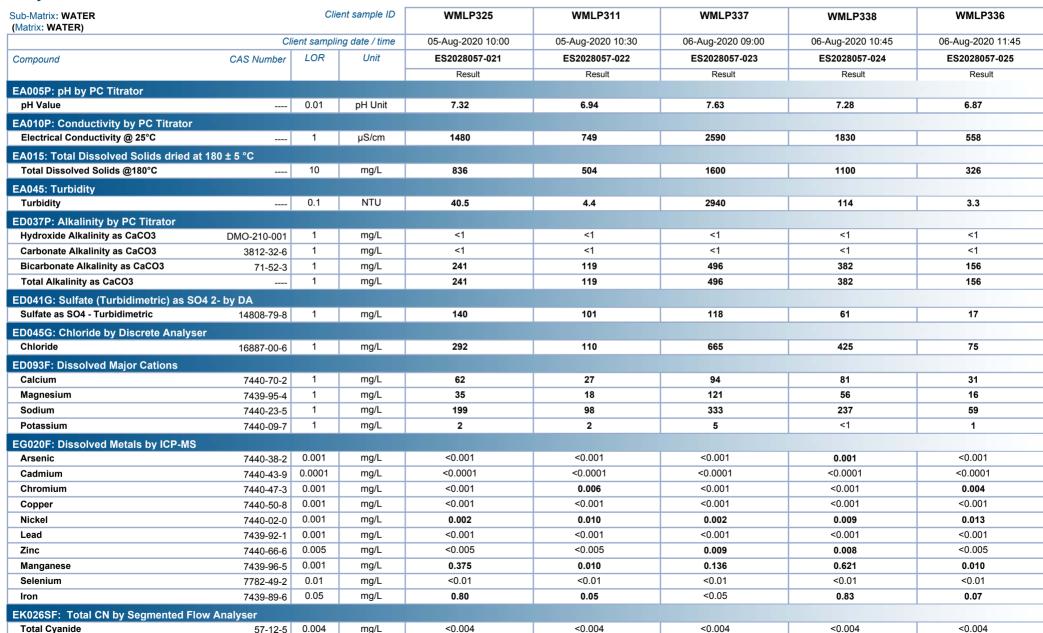
Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Page : 10 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	T5	DUPLICATE	WMLP323	WMLP324	WMLP308
	Cli	ent sampli	ng date / time	05-Aug-2020 12:45	04-Aug-2020 00:00	05-Aug-2020 11:45	05-Aug-2020 11:15	05-Aug-2020 09:15
Compound	CAS Number	LOR	Unit	ES2028057-016	ES2028057-017	ES2028057-018	ES2028057-019	ES2028057-020
				Result	Result	Result	Result	Result
EK057G: Nitrite as N by Discrete Analys	ser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	ser							
Nitrate as N	14797-55-8	0.01	mg/L	4.11	1.46	2.76	1.14	1.14
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	4.11	1.46	2.76	1.14	1.14
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.6	0.7	0.3	0.2
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	5.0	2.1	3.5	1.4	1.3
EK067G: Total Phosphorus as P by Disc	rete Analyser							
Total Phosphorus as P		0.01	mg/L	0.03	0.17	0.03	0.02	0.01
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	6.39	9.39	8.12	11.9	16.8
ø Total Cations		0.01	meq/L	6.80	8.79	8.94	11.3	15.2
ø Ionic Balance		0.01	%	3.10	3.30	4.82	2.56	5.01

Page : 11 of 22 Work Order : ES2028057

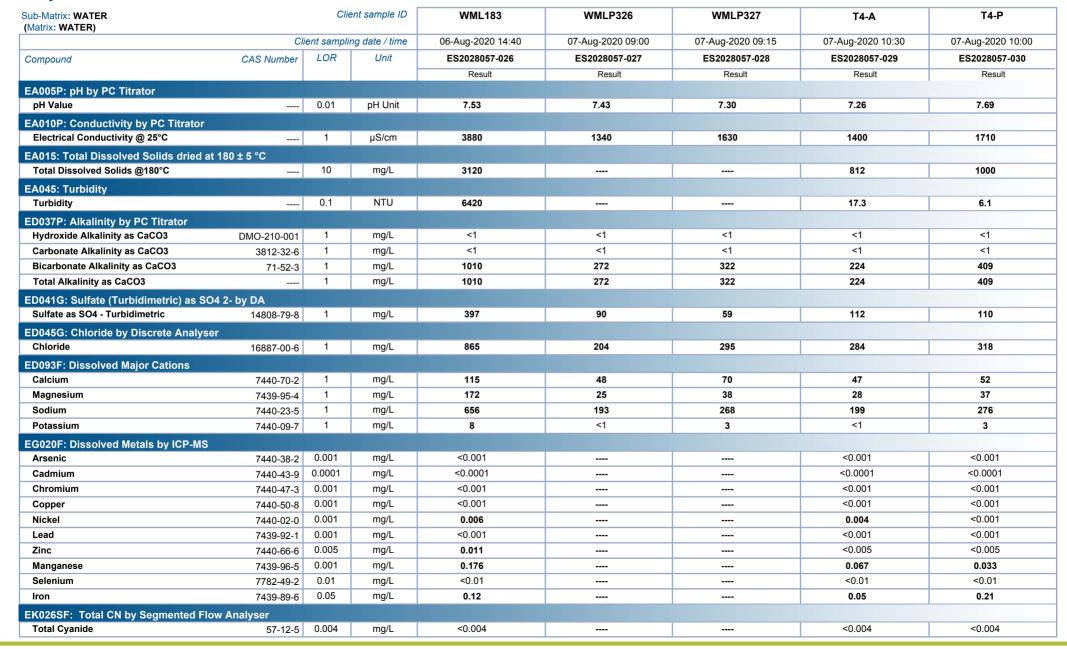
Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Page : 12 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling



Page : 13 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Page : 14 of 22 Work Order ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

0.01

0.01

0.01

0.01

mg/L

meg/L

meq/L

%

1.06

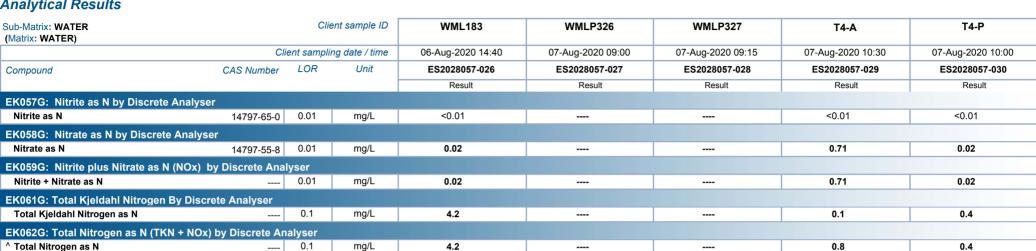
52.8

48.6

4.15

Project G1922K Ashton Annual Sampling

EK067G: Total Phosphorus as P by Discrete Analyser


Analytical Results

Total Phosphorus as P

EN055: Ionic Balance ø Total Anions

ø Total Cations

Ø Ionic Balance

13.1

12.8

0.83

16.0

18.4

6.90

0.02

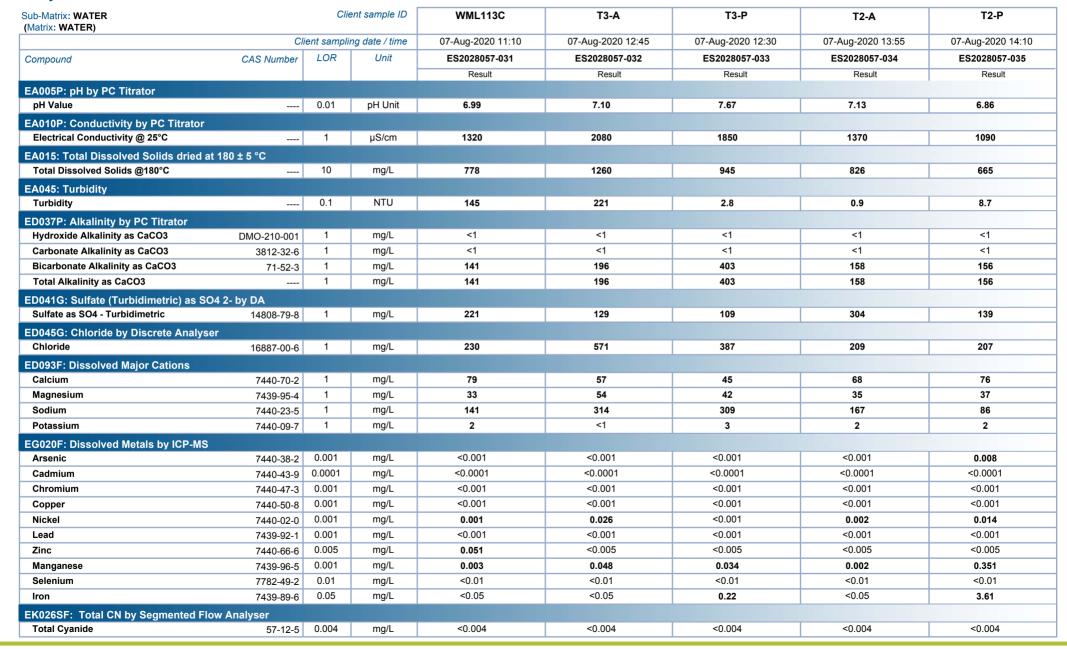
19.4

17.7

4.60

0.14

14.8

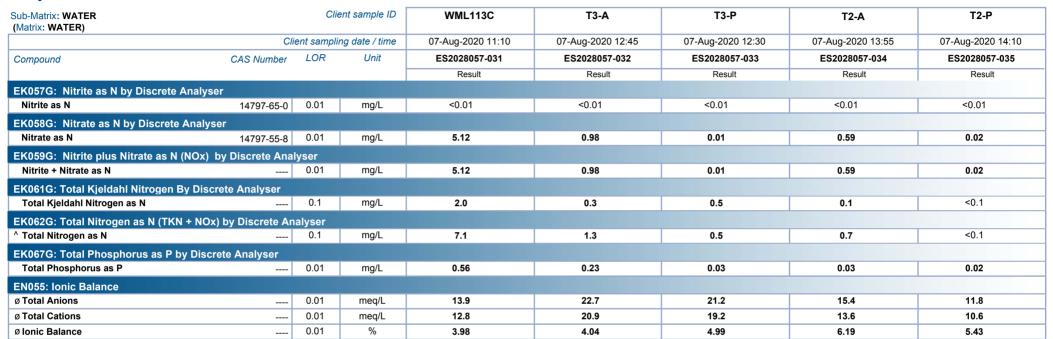

13.3

5.38

Page : 15 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

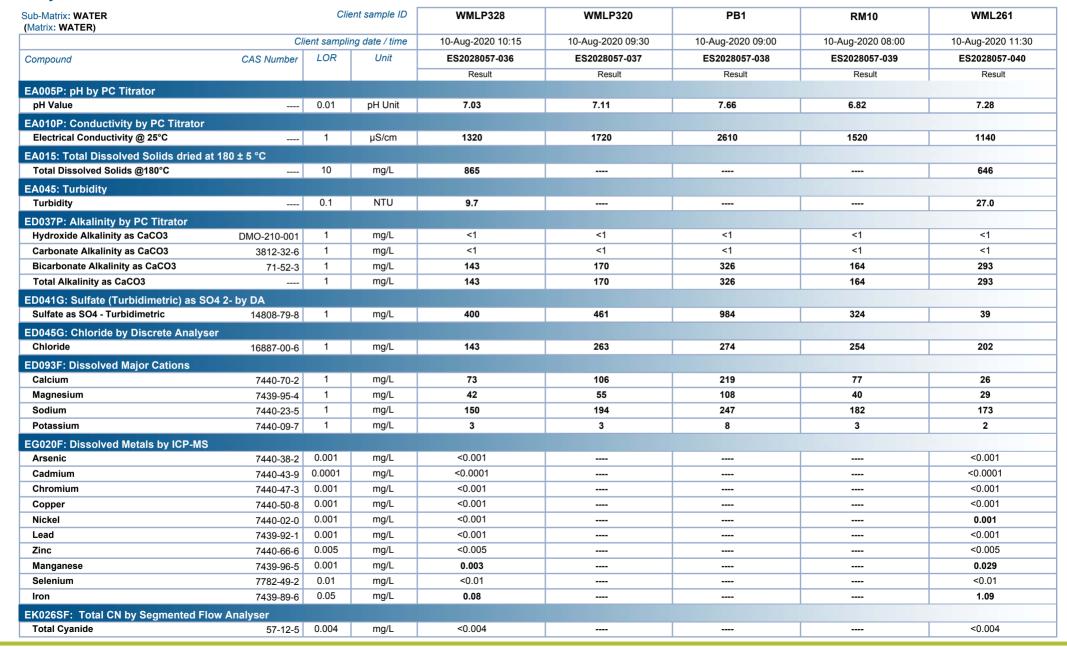
Project : G1922K Ashton Annual Sampling



Page : 16 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

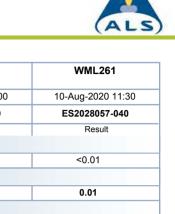
Project : G1922K Ashton Annual Sampling



Page : 17 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling



Page : 18 of 22 : ES2028057 Work Order

: AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD Client

Project : G1922K Ashton Annual Sampling

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WMLP328	WMLP320	PB1	RM10	WML261
	Cli	ent sampli	ng date / time	10-Aug-2020 10:15	10-Aug-2020 09:30	10-Aug-2020 09:00	10-Aug-2020 08:00	10-Aug-2020 11:30
Compound	CAS Number	LOR	Unit	ES2028057-036	ES2028057-037	ES2028057-038	ES2028057-039	ES2028057-040
				Result	Result	Result	Result	Result
K057G: Nitrite as N by Discrete A	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01				<0.01
K058G: Nitrate as N by Discrete A	nalyser							
Nitrate as N	14797-55-8	0.01	mg/L	1.82				0.01
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	1.82				0.01
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4				0.4
EK062G: Total Nitrogen as N (TKN -	⊦ NOx) by Discrete An	alvser						
Total Nitrogen as N		0.1	mg/L	2.2				0.4
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.03				0.05
EN055: Ionic Balance								
Total Anions		0.01	meq/L	15.2	20.4	34.7	17.2	12.4
Total Cations		0.01	meq/L	13.7	18.3	30.8	15.1	11.3
Ionic Balance		0.01	%	5.25	5.37	6.05	6.37	4.67

Page : 19 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Sub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	WMLP302	WML120A	WML120B	WML129	WMLP301
·	C	lient samplii	ng date / time	10-Aug-2020 12:30	10-Aug-2020 13:00	10-Aug-2020 13:30	11-Aug-2020 08:20	11-Aug-2020 09:4
ompound	CAS Number	LOR	Unit	ES2028057-041	ES2028057-042	ES2028057-043	ES2028057-044	ES2028057-045
·				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.91	7.07	6.94	6.78	8.25
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	946	590	439	439	2980
A015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	526	340	258	236	2220
A045: Turbidity								
Turbidity		0.1	NTU	1.4	49.9	1.7	1.0	1540
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	2
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	248	189	145	97	942
Total Alkalinity as CaCO3		1	mg/L	248	189	145	97	944
D041G: Sulfate (Turbidimetric) as So			3				-	
Sulfate as SO4 - Turbidimetric) as St	14808-79-8	1	mg/L	25	9	9	26	9
			mg/L					
D045G: Chloride by Discrete Analys Chloride	16887-00-6	1	mg/L	170	82	54	63	565
	10007-00-0	1	mg/L	170	02	J-7	00	303
D093F: Dissolved Major Cations Calcium	7440 70 0	1	mg/L	21	24	20	22	6
Magnesium	7440-70-2	1	-	26	20	13	13	4
Sodium	7439-95-4		mg/L mg/L	141	72	54	44	728
Potassium	7440-23-5	1	mg/L	2	1	<1	2	2
	7440-09-7	l l	IIIg/L				2	
G020F: Dissolved Metals by ICP-MS		0.004		40.004	40.004	40.004	0.004	40.004
Arsenic	7440-38-2		mg/L	<0.001 <0.0001	<0.001 <0.0001	<0.001 <0.0001	0.001 <0.0001	<0.001 <0.0001
Cadmium Chromium	7440-43-9		mg/L	0.024	<0.0001	<0.0001	<0.001	<0.001
	7440-47-3		mg/L	<0.024	<0.001	<0.001	<0.001	0.001
Copper	7440-50-8		mg/L	0.025	0.001			
Nickel Lead	7440-02-0	0.001	mg/L mg/L	<0.025	<0.002	0.002 <0.001	0.001 <0.001	0.007 <0.001
Zinc	7439-92-1		mg/L	<0.001	<0.001	<0.001	<0.001	0.016
	7440-66-6	0.005	mg/L	0.026	0.117	0.005	0.204	0.016
Manganese Selenium	7439-96-5 7782-49-2	0.001	mg/L	<0.01	<0.01	<0.011	<0.204	<0.029
Iron	7/82-49-2	0.01	mg/L	1.52	0.66	<0.01	0.12	<0.01
		0.03	IIIg/L	1.02	U.00	~0.03	U.12	~0.03
K026SF: Total CN by Segmented Fl		0.004		10.004	40.004	10.004	10.004	*0.004
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004	<0.004	<0.004

Page : 20 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

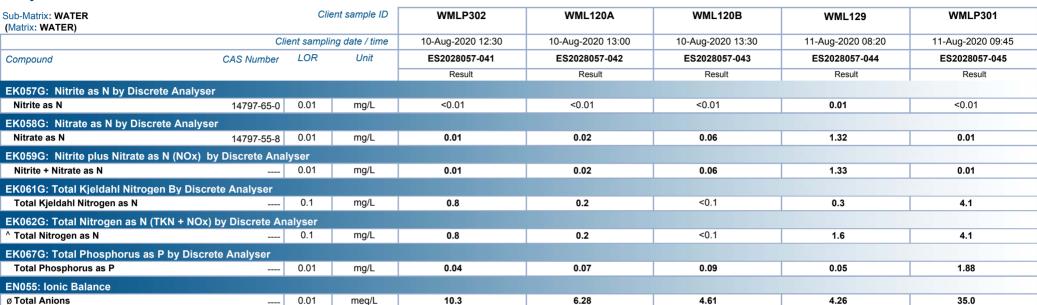
0.01

0.01

meq/L

%

9.37


4.58

Project : G1922K Ashton Annual Sampling

Analytical Results

ø Total Cations

Ø Ionic Balance

6.00

2.24

4.42

2.12

32.3

3.92

4.13

1.48

Page : 21 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	WML119	WML181	WML262		
	C	lient samplii	ng date / time	11-Aug-2020 10:35	11-Aug-2020 11:45	11-Aug-2020 12:45		
ompound	CAS Number	LOR	Unit	ES2028057-046	ES2028057-047	ES2028057-048		
				Result	Result	Result		
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.72	8.07	8.31		
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	1250	2210	2730		
A015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	720	1390	1730		
A045: Turbidity								
Turbidity		0.1	NTU	117	78.8	56.8		
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	28		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	480	705	1010		
Total Alkalinity as CaCO3	71-32-3	1	mg/L	480	705	1040		
D041G: Sulfate (Turbidimetric) as S								
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	<1		
		•	mg/L					
D045G: Chloride by Discrete Analys Chloride	16887-00-6	1	mg/L	168	462	479		
	10007-00-0	1	IIIg/L	100	402	4/3		
D093F: Dissolved Major Cations	7440 70 0	1	ma/l	20	40	-		1
Calcium	7440-70-2		mg/L	32 28	19	7		
Magnesium Sodium	7439-95-4	1	mg/L	225	493	681		
	7440-23-5	1	mg/L	3	3	3		
Potassium	7440-09-7	1	mg/L	3	<u> </u>	3		
G020F: Dissolved Metals by ICP-MS		0.004		10.004	40.004	40.004		
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001		
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001		
Chromium	7440-47-3	0.001	mg/L	0.018	0.005	<0.001		
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001		
Nickel	7440-02-0	0.001	mg/L	0.009	<0.001	<0.001		
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001 <0.005	<0.001 <0.005		
Zinc	7440-66-6	0.005	mg/L	<0.005				
Manganese	7439-96-5	0.001	mg/L	0.092	0.019	0.034		
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01		
Iron	7439-89-6	0.05	mg/L	0.11	<0.05	0.08		
EK026SF: Total CN by Segmented Fl								
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.004		

Page : 22 of 22 Work Order : ES2028057

Client : AUSTRALASIAN GROUNDWATER AND ENVIRONMENTAL CONSULTANTS PTY LTD

Project : G1922K Ashton Annual Sampling

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	WML119	WML181	WML262	
	Clie	ent sampli	ng date / time	11-Aug-2020 10:35	11-Aug-2020 11:45	11-Aug-2020 12:45	
Compound	CAS Number	LOR	Unit	ES2028057-046	ES2028057-047	ES2028057-048	
				Result	Result	Result	
EK057G: Nitrite as N by Discrete Ana	alyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.01	
EK058G: Nitrate as N by Discrete An	alyser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.02	
EK059G: Nitrite plus Nitrate as N (NC	Dx) by Discrete Analy	yser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.03	
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.3	1.1	1.4	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ana	alyser					
^ Total Nitrogen as N		0.1	mg/L	1.3	1.1	1.4	
EK067G: Total Phosphorus as P by D	iscrete Analyser						
Total Phosphorus as P		0.01	mg/L	0.22	0.16	0.61	
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	14.3	27.1	34.3	
ø Total Cations		0.01	meq/L	13.8	24.1	30.5	
ø Ionic Balance		0.01	%	2.01	5.86	5.78	

DADELAIDE 21 Burma Road Pooraka SA 506MACKAY 78 Harbour Road Mackay Ph: 08 8359 0890 E: adelside@alsqlobal.comPh: 07 4944 0177 E: mackay@alsglobal.comPh: 07 4944 0177 E: mackay@alsglobal.comPh: 08 8359 0890 E: adelside@alsglobal.comPh: 08 4944 0177 E: mackay@alsglobal.comPh: 08 4944 0177 E: mackay.comPh: DBRISBANE 32 Shand Street Stafford QLD 4053
Ph. 07 3243 7222 E. samples brisbane @alsolobat.com

DMELBOURNE 2-4 Westall Read Springvale VIC 317-Ph: 03 8549 9600 E: samples: elbourne@alsglobel.com

ENDWOGENE STORE Gum Road Warabrook NSW 2304

□SYDNEY 277-289 Woodpark Road Smithfield NSW 2154 Ph: 02 8784 8555 E: samples.sydney@afsqlobal.com DTOWNSVILLE 14-15 Desma Court Boble QLD 4818

শ্রিপথ এটি শ্রেণ ভর্তত ক্ষেত্র কর্ম ALS Leborato please tick	D1 03 3131 F000 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph 02 4225 3125 E. portkembla@aisglobal.com
CLIENT: AGE Consultants	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):	FOR LABORATORY USE ONLY (Circle)
OFFICE: Newcastle	(Standard TAT may be longer for some tests Ultra Trace Organics)	e.g Non Standard or urgent TAT (List due date):	CustodySeat∖intact? Yes No W
PROJECT: Ashton Annual Sampling	ALS QUOTE NO.: EN/222		lares Ke / frozen ide bricks present upon Yes No. N
PROJECT ID: G1922K		COC SEQUENCE NUMBER (Circle)	6 7 Random Sample Tamperature on Receipt:
PROJECT MANAGER: Bryce McKay	CONTACT PH: 0414 324 504	WEASTLE: 3 (1) 6	6 7 Other comments
SAMPLER: Glen Brumm	SAMPLER MOBILE: 0428 283 457	RELINQUISHED BY: RECEIVED BY:	RELINQUISHED BY: RECEIVED BY:
COC Emailed to ALS? YES	EDD FORMAT (or default): XTAB, ENMRG, ESDAT, PDF, MONPRO	Glen Roma	Hσ
Email Reports to: Glen@ageconsultants.com.au, bryce@a	ageconsultants.com.au	DATE/TIME: DATE/TIME:	DATE/TIME: DATE/TIME: 7.45 pm
Email invoice to: As above + accounts@ageconsultants.co	m.au	12/68/2020,11:55 12/8/20 11:55	12.8.2

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE	SAMPLE DET MATRIX: SOLID (S)	TÄIES WATER (W)		CONTAINER INFORMATION			A Where N	NALYSIS R letals are n	REQUIRE equired, s	D including pecify Total	SUITES (NB. (unfiltered bott	Suite Codes must b le required) or Diss	e listed to attra plved (field filt	ct suite price ered bottle n	e) equired),	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	pH & EC	VT-1 & NT-2	N-1 (7 metals)	EG020 - Fe, Mn, Se	EA015H - TDS	EA045 - turbidity	NT-11 - Total P, Total N	EK058G - NO3	ED035 - HCO3	EK026SF	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
1	WML115B	3/8/20; 13:30	w	Р	1	х	x						<u> </u>			
2	WML115C	3/8/20; 13:45	w	Р	1	х	x									
3	WMLP358	3/08/2020; 8:45	w	P, N, S, SP	5	х	х	×	х	×	x	x	×	х	х	
4	WML239	3/8/20; 10:45	w	P, N, S, SP	5	х	х	×	х	x	×	х	×	х	х	
5	WMLP349	3/8/20; 9:30	w	P, N, S, SP	5	х	х	×	х	x	x	х	х	х	x	
6	WMLP346	3/8/20; 11:30	w	P, N, S, SP	5	×	х	x	х	х	x	x	x	x	х	
7	WMLP343 3/5	3/8/20; 12:15	w	P, N, S, SP	5	x	x	×	х	х	x	x	х	x	x	
8	GM01	4/8/20; 8:40	w	P, N, S, SP	5	х	х	x	х	х	x	x	×	х	х	Environmental Division
9	YAP016	4/8/20; 8:10	w	P, N, S, SP	5	х	x	×	х	х	, x	x	×	х	x	Sydney Work Order Reference
10	RA27	4/8/20; 10:20	w	P. N, S, SP	5	x	х	x	×	х	x	x	x	х	×	ES2028057
11	WMLP277	4/8/20; 11:40	w	P, N, S, SP	5	x	х	×	x	х	х	x	×	x	x	20202007
12	WMLP278	4/8/20; 12:30	w	P, N, S, SP	5	×	х	x	х	x	x	×	x	×	x	
				TOTAL	52			<u> </u>								

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Alifreight Unpreserved Plastic; F = Formaldehyde Preserved Vial SG = Sulfuric Preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glast Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; SST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

ALS
1/19 1 月 8 月 8 月 10 日 10

ALS Laboratory:

DADELAIDE 21 Burma Road Poorske SA 50BMACKAY 78 Harbour Road Mackay QLD 4740 Ph: 08 8359 0890 E. adelaide@aisglobal.com*h: 07 4944 0177 E: mackay@alaglobal.com

DBRISBANE 32 Shand Street Stafford QLD 4053 Ph. 07 3243 7222 E: samples.brisbane@alsglobal.com GGLADSTONE 46 Callemondah Drive Cinton QUD 4680 DMELSOURNE 2-4 Westall Road Springvale /IC 3171
Ph: 03 8549 9600 E: samples melbourne@ais tobal.com MUDGEE 27 Sydney Road Mudgee NSW 2850

TESTES Space Gual Road Warabrook NSW 2304

DNOWRA 4/13 Geary Place North Nowe NSW 2541

Ph. 024423 2063 E: nowra@aksqubel odm

OPERTH TO Plot vis y Malage WA 6090

□SYDNEY 277-289 Woodpark Road Smithfield NSW 2184 Ph; 02 8784 8555 E. samples.sydney@alsglobal.com ☐TOWNSVILLE 14-15 Desma Court Bohle QLD 4818
Ph: 07 4796 0600 E: townsville environmental@asglobal.com □WOLLONGONG 99 Kenny Street Wollongong NSW 2500

	please tick →	gladstone@aisgidbail.com	-10, 02 03/2 0/35 E. mudgee.ma	ali@aisglobai.com	n	A roso E: samples.pertn@alsg	lobal.com	Ph: 02 422	5 3125 E. portkembla@alsglobel.com	
CLIENT: AGE Consultants		TURNAROUND REQUIREMENTS:	Standard TAT (List due date):					FOR LABORAT	ORY USE ONLY (Circle)	
OFFICE: Newcastle		(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	g Non Standard or urgent TAT (List due	date):	LAB O	- ORIGIN.		Custody, Seek Inter-		o CNTA
PROJECT: Ashton Annual Sampling ALS QUOTE NO.: EN/222								Fied ice / frezen ice	s bricks present upon Yes No	N/A
PROJECT ID: G1922K				coc:	, MANA	JENGE HUMBER (CITCL)	5	6 7 Random Sample T	emperature on Receipt: C	
PROJECT MANAGER: Bryce McKay	CONTACT	PH: 0414 324 504		OF:	1 2	, (i)	5	6 7 Other comment	7.5	
SAMPLER: Glen Brumm	SAMPLER	MOBILE: 0428 283 457	RELINGUISHED BY:	RECEIVE	D BY:		*****	RELINQUISHED BY:	RECEIVED BY:	22.2
COC Emailed to ALS? YES	EDD FORM PDF, MON	IAT (or default): XTAB, ENMRG, ESDAT, PRO	[Governog run	-	m				HJ	
Email Reports to: Glen@ageconsultants.c	com.au, bryce@ageconsultants.com.au	ı	DATE/TIME:	_DATE/TIM	IE:		•	DATE/TIME:	DATE/TIME:	45pm
Email Invoice to: As above + accounts@ag	econsultants.com.au		12/68/2020,11:55	1	218/20	11:55	-		12.8.20	TOJOH
COMMENTS/SPECIAL HANDLING/STORAGE O	R DISPOSAL:									

ALS USE	SAMPLE DET MATRIX: SOLID (S):			CONTAINER INFORMATION			Al Where M	VALYSIS Ri otals are re	EQUIRE: quired, s	D Including pecify Total	SUITES (NB. : (unfiltered bott)	Suite Codes must be e required) or Disse	listed to attra lived (field filte	ct suite price ered bottle re	r) aquirad).	 Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	pH & EC	NT-1 & NT-2	W-1 (7 metals)	EG020 - Fe, Mn, Se	EA015H - TDS	EA045 - turbidity	NT-11 - Total P,	EK058G - NO3	ED035 - HCO3	EK026SF	Comments on likely contaminent levels, dilutions, or samples requiring specific QC analysis atc.
13	WMLP279	4/8/20; 12:45	w	P, N, S, SP	5	х	х	х	x	×	x	x	х	х	х	
14	WMLP280	4/8/20; 11:15	w	P, N, S, SP	5	x	х	x	x	×	х	×	х	×	х	
15	Ashton Well	5/8/2020; 8:45	w	Р	1	х	х				_					
16	T5	5/8/2020; 12:45	w	P, N, S, \$P	5	x	х	×	х	x	x	х	х	×	×	
17	DUPLICATE	4/08/2020	W	P, N, S, SP	5	×	х	x	х	х	x	х	х	х	х	
18	WMLP323	5/8/2020; 11:45	w	P, N, S, SP	5	х	х	×	х	х	x	x	×	x	x	
19	WMLP324	5/8/2020; 11:15	w	P, N, S, SP	5	х	х	x	х	х	х	×	×	×	×	
20	WMLP308	5/8/2020; 9:15	w	P, N, S, 3P	5	×	х	х	х	х	х	х	х	х	х	
21	WMLP325	5/8/2020; 10:00	w	P, N, S, SP	5	х	x	x	x	х	х	x	x	х	х	
22	WMLP311	5/8/2020; 10:30	w	P, N, S, SP	5	х	х	х	x	х	x	×	x	×	x	
23	WMLP337	6/8/2020; 9:00	w	P, N, S, SP	5	х	х	х	x	×	х	×	х	х	x	
24	WMLP338	6/08/2020; 10:45	w	P, N, S, SP	5	х	x	х	х	х	×	×	х	х	х	
Water Container Codes: F	E Universal of Platfic N = Nitric Press and Platfic	OPC = Nittle Presented OPC	eu - c	TOTAL odium Hydroxide/Cd Preserved; S = Sodium Hydroxide												

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; GRC = Nitric Preserved Plastic; GRC = Nitric Preserved Plastic
Y = VOA Vial Hcl Preserved; NB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Aspeciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; B = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; B = HCl preserved Bottle; E = EDTA Preserved Bottle; SP = Sterile Bottle; SS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = EDTA Preserved Plastic; B = CTA Preserved Plastic; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = EDTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; B = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = DTA Preserved Bottle; CF = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bottle; B = DTA Preserved Bottle; CF = DTA Preserved Bottle; DF = DTA P

\triangle
(ALS)

□ADELAIDE 21 Burma Road Pooraka SA 5058/ACKAY 78 Harbour Road Meckay QLD 4740 Ph. 08 8359 0890 E: adelaide @atojiobal.com Ph. 07 4944 0177 E: mackay@atojiobal.com

OBRISBANE 32 Shand Street Stafford QLD 4053
Ph 07 3243 7222 E: samples.brisbane@alsglobal.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 6549 9600 E. samples melbourne@atsglobal.com LIMUDGEE 27 Sydney Road Mudgee NSW 2850

DNEWCASTLE 5 Rose Gum Road Warabrook NSW 2304 Ph; 02 4958 9433 E: samples.newcastle@aisglobal.com UNOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 024423 2063 E: nowra@alsglobal.com DPERTH 10 Hod Way Malaga WA 6090

☐SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Phr 02 8784 8555 E: samples.svdney@alsglobal.com TOWNSVILLE 14-15 Desma Court Bohle QLD 4818
Ph: 07 4796 0500 E: townesville.onvironmental@alsglobal.com TWOLLONGONG 99 Kenny Street Wallangers NSW 2500

्रे ^{क्टर} ताल ६, इ.स. ताल इताब इताब इताब हा के हा है। ५ वर १	ALS Laboratory: please tick →	□GLADSTONE 46 Callemon Ph: 07 7471 5600 E: gladsto	ndah Drive Clinton QLD 4680 ine@alsglobal.com	EMUDGEE 27 Sydney Road N Ph: 02 6372 6785 E: mudgee r		DPERTH 10 H	od Way Malaga WA 6090 i5 E: samples.perth@alsglobs	il.com		9 Kenny Street Wollangong NSW 2500 portkembla@alsglobal.com
CLIENT: AGE Consultants		TURNAROUND REQUIR	EMENTS: Standa	ard TAT (List due dete):					FOR LABORATORY US	SE ONLY (Gircle)
OFFICE: Newcastle		(Standard TAT may be longer Uftra Trace Organics)	for some tests e.g	Standard or urgent TAT (List du	e date):				Gustody Seal Intact?	Yas No N/A
PROJECT: Ashton Annual Sampling			/222			COC SEQUENC	E NUMBER (Circle)		Files ice / frozen ice bnoks p	ordsein ipon Yes No N/A
PROJECT ID: G1922K					COC: 1	2 (s) 4	5 6	7 Random Sample Temperatu	The sales where the sales were the sales are
PROJECT MANAGER: Bryce McKay		CONTACT PH: 0414 324 504			OF: 1	2	$\langle a \rangle$	5 6	7 Other comment:	2.5
SAMPLER: Glen Brumm		SAMPLER MOBILE: 0428 283 457	RELINQUIS	SHED BY:	RECEIVED BY:	1			RELINQUISHED BY:	RECEIVED BY:
COC Emailed to ALS? YES		EDD FORMAT (or default): XTAB, ENN PDF, MONPRO	IRG, ESDAT,	mer		//nc	$\overline{}$			HJ
Email Reports to: Glen@ageconsulta	ants.com.au, bryce@agecons	ultants.com.au	DATE/TIME	08/2120,11:5.	S DATE/TIME:	,			DATE/TIME:	DATE/TIME: 7:45 pm
Email Invoice to: As above + accounts	s@ageconsultants.com.au		IPI	186/200,11.5	12/81	20	11:55		j	12.8.20
									·	

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE	SAMPLE D MATRIX: SOLID (5			CONTAINER INFORMATION			A Where N	NALYSIS R letals are re	EQUIRE equired, s	D including pecify Total	SUITES (NB.:	Suite Codes must be e required) or Diss	a listed to attra plyed (field fitt	act suite price ared bottle r	e) equired).	Additional Information
LAB ID	\$AMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	pH & EC	NT-1 & NT-2	W-1 (7 metals)	EG020 - Fe, Mn, Se	EA015H - TDS	EA045 - turbidity	NT-11 - Total P, Total N	EK058G - NO3	ED035 - HCO3	EK026SF	Comments on likely contaminant levels, di or samples requiring specific QC analysis
25	WMLP336	6/08/2020; 11:45	w	P, N, S, SP	5	x	×	x	x	x	х	х	х	x	×	
26	WML183	6/08/2020; 14:40	w	P, N, S, SP	5	х	×	х	x	х	х	x	×	х	x	
27	WMLP326	7/08/2020; 9:00	w	Р	1	х	×									
28	WMLP327	7/08/2020; 9:15	w	Р	1	х	×						<u> </u>			
29	T4-A	7/08/2020; 10:30	w	P, N, S, SP	5	х	х	x	x	×	x	х	х	х	×	
30	Т4-Р	7/08/2020; 10:00	w	P, N, S, SP	5	x	х	x	×	x	x	х	х	×	×	
31	WML113C	7/08/2020; 11:10	w	P, N, S, SP	5	x	х	×	x	х	x	х	х	×	х	
32	T3-A	7/08/2020; 12:45	w	P, N, S, SP	5	х	х	×	×	х	х	х	х	x	х	
33	Т3-Р	7/08/2020; 12:30	w	P, N, S, SP	5	x	х	x	x	x	х	х	х	х	х	
34	T2-A	7/08/2020; 13:55	w	P, N, S, SP	5	×	х	×	×	х	х	x	х	×	х	
35	Т2-Р	7/08/2020; 14:10	w	P, N, S, SP	5	х	х	×	×	х	x	х	х	×	х	
36	WMLP328	10/08/2020; 10:15	w	P, N, S, SP	5	х	х	х	х	х	х	x	×	×	х	
				TOTAL												

Water Container Codes: P = Unpreserved Plastic; N = Ndric Preserved Plastic; ORC = Nitric Preserved Plastic
V = VOA Vial HCI Preserved: S = Sodium Hydroxide Preserved Plastic; N = HCI preserved Plastic; N = Ndric Preserved Plastic
V = VOA Vial HCI Preserved: N = VOA Vial Sodium Bisulphate Preserved: VS = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; ASS = Sulfuric Preserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottles; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottles; ASS = Plastic Bag for Acid Sulphate Solie; B = Unpreserved Bottles; ST = Starile Bottles; ASS = Plastic Bag for Acid Sulphate Solie; Bag for Acid Sulphate

ALS	
 4.5.54	_

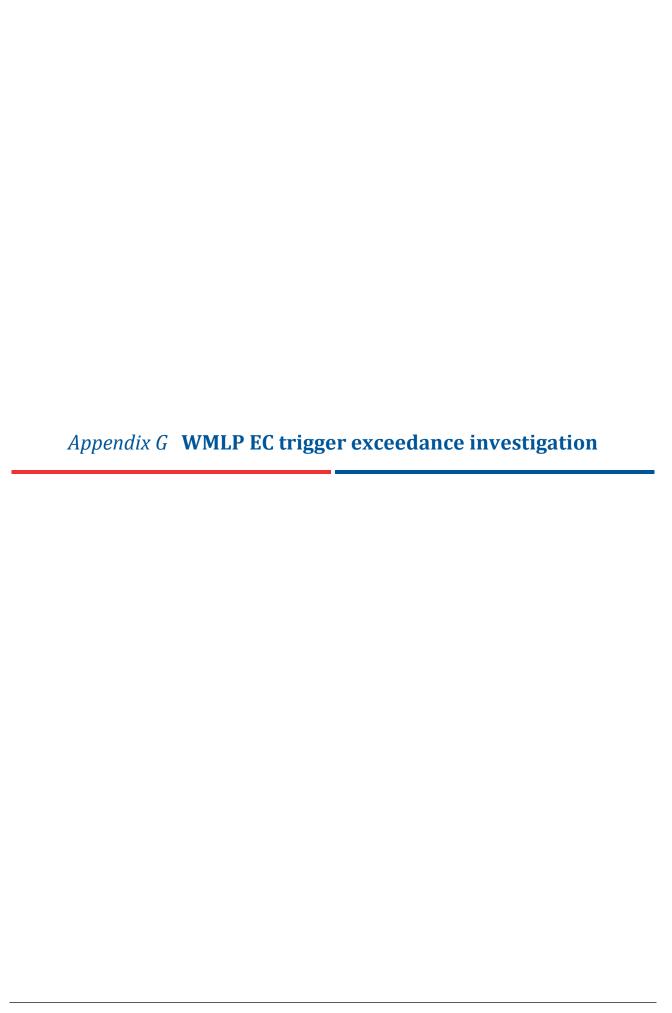
DADELAIDE 21 Burma Road Poorska SA 505BMACKAY 78 Harbour Road Mackay QLD 4740 Ph. 08 8359 0890 E. adetaide@etsglobal.comf h: 07 4944 0177 E mackay@etsglobal.com

UBRISBANE 32 Shand Street Stafford QLD 4053
Ph: 07 3243 7222 E: samples.bnsbane@alsolobet.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171
Ph: 03 8549 9600 E: samples.mefbourne@alsqlobal.com

UNEWCASTLE 5 Rose Gum Road Werebrook NSW 2304 Ph. 02 4968 9433 E: samples.newcastle@alsolobal.com DNOWRA 4/13 Geary Place North Nowra NSW 2541

DTOWNSVILLE 14-15 Desma Court Bohle QLD 4818
Ph: 07 4796 0600 F : townsoulle environmental@alexabel


□SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 92 8784 8555 E: samples sydnew@alsglothal.com

ই::ভিশ্ব ব্যক্তি পাল্ডাছ্ড প্রায়খন্ত দে	ALS Leboratory: please tick ->	⊔GLADSTONE 46 Callemondah Drive i Ph: 07 7471 5600 E. gladstone@alsglob		EIMUDGEE 27 Sydney Road Mar Ph: 02 6372 5735 E. mudgee.ma		QPER	FH 10 Hod Way Me 9209 7655 E: sam			□WOLLONGONG 99	Kenny Street Wollangong NSW 2500 ortkembla@aleglobal.com
CLIENT: AGE Consultants		TURNAROUND REQUIREMENTS	: 🗷 Sta	ndard TAT (List due date):	·····		M A			FOR LABORATORY US	E-ONLY (Circle)
OFFICE: Newcastle		(Standard TAT may be longer for some Ultra Trace Organics)	tests e.g Nor	n Standard or urgent TAT (List due	date):				_	Gustody Seal Intect?	Yes No N
PROJECT: Ashton Annual Sampling		ALS QUOTE NO.: EN/222			T	GOC SE	MENCE NIIM	BER (Circle)		Free ice / frozen ice bricks pr receipt?	
PROJECT ID: G1922K					coc:	1 2	3	Cy 5	8	7 Kandom Sample Temperatu	re on Receipt C
PROJECT MANAGER: Bryce McKay		CONTACT PH: 0414 324 504			OF:	1 2	3	D ,	6	7 Other comment:	7.5
SAMPLER: Glen Brumm		SAMPLER MOBILE: 0428 283 457	RELINQ	UISHED BY:	RECEIVED B	Y:		· · · · · · · · · · · · · · · · · · ·		RELINQUISHED BY:	RECEIVED BY:
COC Emailed to ALS? YES		EDD FORMAT (or default): XTAB, ENMRG, ESI PDF, MONPRO	DAT,	sub z		LAB	OF OF	2000			H5
Email Reports to: Glen@ageconsulta	nts.com.au, bryce@agecons	ultants.com.au	DATE/TI		DATE/TIME:	NEL	VC 4.5	VISHA!		DATE/TIME:	DATE/TIME: 7,45pm
Email Invoice to: As above + accounts	@ageconsultants.com.au		12/	08/2020/11:50	, 2	187	5 840	METT			12.8.20
COMMENTAGEMENT CONTRACTOR										· · · · · · · · · · · · · · · · · · ·	

ENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE	SAMPLE (Matrix: Solid (CONTAINER INFORMATION			Al Where M	NALYSIS Ri letals are re	EQUIREI iquired, s	D including pecify Total	SUITES (NB. : (unfiltered bott	Suite Codes must be le required) or Diss e	e ilsted to attra olved (field filt	ct suite price ered bottle re	a) equired).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	pH & EC	NT-1 & NT-2	W-1 (7 metals)	EG020 - Fe, Mn, Se	EA015H - TDS	EA045 - turbidity	N7-11 - Total P, Total N	EK058G - NO3	ED035 - HCO3	EK026SF	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
37	WMLP320	10/8/2020; 9:30	w	P _p hi ptiptic	11	x	x	No.	X	A	1	X	1	*	X	
38	PB1	10/8/2020; 9:00	w	Р	1	×	x									
39	RM10	10/8/2020; 8:00	w	Р	1	х	х									
40	WML261	10/8/2020; 11:30	w	P, N, S, SP	5	х	х	х	x	х	х	×	×	х	×	
41	WMLP302	10/8/2020; 12:30	w	P, N, S, SP	5	х	х	х	x	х	х	×	×	х	x	
42	WML120A	10/8/2020; 13:00	w	P, N, S, SP	5	х	х	×	х	×	х	х	х	х	х	
43	WML120B	10/8/2020; 13:30	w	P, N, S, SP	5	х	х	х	х	x	х	×	х	х	x	
44	WML129	11/8/2020; 8:20	w	P, N, S, SP	5	х	х	×	х	×	х	x	x	×	x	
45	WMLP301	11/8/2020; 9:45	w	P, N, S, \$P	5	х	х	x	х	×	х	x	х	х	х	
46	WML119	11/8/2020; 10:35	w	P, N, S, SP	5	х	х	x	х	x	×	×	x	х	х	
47	WML181	11/8/2020; 11:45	w	P, N, S, SP	5	х	х	х	х	×	х	×	х	х	х	
48	WML262	11/8/2020; 12:45	w	P, N, S, SP	5	x	х	х	х	×	х	x	х	×	х	
	- University of Plantin, N Nitte Orange of Div			TOTAL	52											

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; SG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; V = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; F = HCI preserved Speciation bottle; SP = Suffuric Preserved Plastic; F = Formaldehyde Preserved Glass; F = EDTA Preserved Speciation bottle; SP = Suffuric Preserved Plastic; F = Formaldehyde Preserved Glass; F = Formaldehyde Preserved Plastic; F = Formaldehyde Preserved Plastic; F = Formaldehyde Preserved Glass; F = Formaldehyde Preserved Plastic; F = Formaldehyde Preserved Plastic; F = Formaldehyde Preserved Flastic; F = Formaldehyde Flast

Australasian Groundwater and Environmental Consultants Pty Ltd

Level 2 / 15 Mallon Street Bowen Hills, QLD 4006 Australia ABN: 64 080 238 642 T. +61 7 3257 2055 F. +61 7 3257 2088 brisbane@ageconsultants.com.au www.ageconsultants.com.au

BM/AB:ak G1922N.Yancoal Ashton WMLP323 EC exceedance v02.01

3 September 2020

Yancoal Australia

Ashton Coal Mine Camberwell NSW via email

Attention: Phillip Brown cc: Dorian Walsh

Dear Phillip,

RE: Ashton Coal Mine – Compliance Monitoring Exceedance Investigation - Monitoring Bores WMLP323, WMLP328, WML113C

1 Introduction

The Ashton Coal Mine (Ashton) routinely monitors groundwater levels and quality in the groundwater systems overlying the underground mining area. The monitoring network targets the Quaternary alluvium and Permian interburden/coal units with open monitoring bores and vibrating wire piezometers (VWP). Monitoring campaigns are conducted on a monthly basis to collect water level and quality data from the monitoring network. The data collected from key monitoring is reviewed on a monthly basis, whilst the remainder of bores are reviewed annually, in accordance with the Water Management Plan (WMP¹).

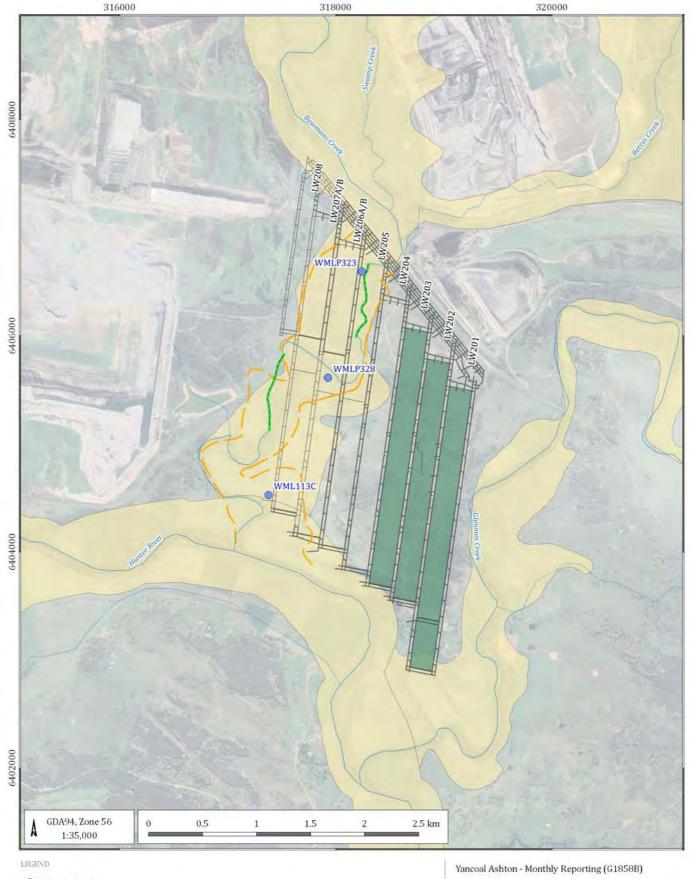
Monitoring bores WMLP323, WMLP328 and WML113C are screened in the Bowmans Creek Alluvium (BCA; Figure 1.1). In May 2020, bore WMLP323 was found to have exceeded the site WMP electrical conductivity (EC) trigger for three consecutive monitoring rounds. The WMP requires three consecutive exceedances of the EC trigger be investigated.

¹ Water Management Plan (WMP) - reviewed and updated by Gilbert & Associates Pty Ltd and Australasian Groundwater and Environmental (AGE) on behalf of Ashton and approved by the NSW Department of Planning & Environment (DPE) on 27 October 2015. The groundwater monitoring program was changed and came into force the 1st November 2015. Further amendments to the WMP following DPE comments saw the latest iteration issued on 1 March 2018.

BCA monitoring bore WMLP328 recorded a spike in EC in May 2020. This bore has had EC values above its EC trigger level since June 2019, and has been investigated previously as a result of exceeding WMP EC trigger criteria.

BCA monitoring bore WML113C did not exceed the WMP EC trigger criteria in May 2020, however EC values within this bore have been steadily increasing. As of June 2020, there has been insufficient water in this bore to allow for groundwater to be sampled.

These three bores have recorded a general decline in groundwater levels since August 2017; correlating with a declining cumulative rainfall departure (CRD). WMLP323 has recorded groundwater levels below the respective trigger since June 2019. WMLP328 levels have been below the groundwater level trigger since June 2018. WML113C does not have a groundwater level trigger. This general trend of decreasing groundwater levels and increasing EC in the BCA has been investigated previously, and was found to be due to below average rainfall² ³.


Figure 1.1 shows the locations of WMLP323, WMLP328 and WML113C with the extent of mapped Quaternary alluvium, the inferred extent of saturated alluvium (after Aquaterra 2009⁴), and the location of mined longwall panels.

Ashton engaged Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) to investigate and report on the elevated EC values in these bores. Whilst the focus of the investigation is concerned with the recorded EC exceedances in WMLP323, commentary and analysis of WMLP328 and WML113C is also provided due to the latest recorded EC values in these bores. This report summarises the results of the investigation.

² AGE (2018), AGE (2018), Ashton Coal Mine – July monitoring Exceedance Review – Investigation of Monitoring Bore WMLP311. AGE Report No G1922E submitted to Yancoal 31 July 2018.

³ AGE (2019), Ashton Coal Mine – T2A Monitoring Bore Investigation. AGE Report No G1922I dated 20 September 2019.

⁴ Aquaterra (2009), Ashton Underground Mine Extension of Development Consent Area - Groundwater Impact Assessment.

Monitoring bore

--- Drainage

--- Drainage

--- Diversion

— Longwall panels (ULLD)

---- Saturated BCA (Aquaterra 2009)

Alluvium

Mined longwall panel (ULLD)

 $\begin{array}{l} \textbf{Location of WMLP323, WMLP328, and} \\ \textbf{WML113C} \end{array}$

DATE 12/08/2020 FIGURE No:

1.1

2 Investigation and results

2.1 Monitoring bores - WMLP323, WMLP328 and WML113C

Monitoring bore WMLP323 was drilled by Hunter Drilling and installed under the supervision of Aquaterra on 10 February 2011 at the request of Ashton. The purpose of this bore was to assess how groundwater in the BCA interacts with that from the weathered profile of the underlying coal measures overburden. This shallow bore overlies the unmined section of longwall panel LW205 (refer Figure 1.1).

WMLP323 was installed to a depth of 7.34 metres below ground level (mbgl), and is screened across multiple lithologies (alluvial sand and gravel and weathered Permian sandstone) between 3.34 mbgl and 6.34 metres below ground level (mbgl).

WMLP328 was also drilled by Hunter Drilling and installed under the supervision of Ashton on 1 March 2011. This bore overlies longwall panel LW206A/B, was drilled to 8 mbgl, and is screened in gravel between 4.5 mbgl and 7.5mbgl. WMLP328 did not intersect the weathered Permian overburden.

WML113C was drilled to 12 mbgl and is located slightly to the west of longwall panel LW207A/B. WML113C is screened across multiple lithologies (alluvium and weathered interbedded sandstone/siltstone/mudstone) between 8.5 mbgl and 11.5 mbgl.

The Ashton WMP outlines the groundwater monitoring program and lists trigger criteria (groundwater level and quality) to be used to assess the potential for mining to impact the alluvial groundwater system. The WMP includes bore-specific triggers for groundwater level, and aquifer-specific water quality impact assessment criteria for each of the three alluvial aquifers on site: BCA, Glennies Creek Alluvium (GCA), and the Hunter River Alluvium (HRA).

As described within the WMP, the groundwater trigger values account for natural variation using data collected between 2011 to 2015. The water level trigger values also account for approved impacts of the mine⁵ indicated by predicted drawdown⁶. The result is a practical trigger level that accounts for both approved mining impacts and natural variability. As noted above, the water levels in both WMLP323 and WMLP328 have been below the respective triggers since 2019, and 2018. This is an indication that the contribution of the declining CRD to decreasing water levels is significant. BCA is approved to be dewatered in areas above the mine plan by the end of mining of the Upper Liddell seam³. Trigger values are therefore intended as a guide representing updated, more conservative, impact predictions from the updated groundwater model.⁷

Similar to groundwater levels, groundwater quality varies naturally. Water quality triggers are based on groundwater quality records and use the calculated 5th and 95th percentile of the historical data for pH and EC. These percentiles are more conservative than those outlined in the procedure recommended by ANZECC/ARMCANZ (2000).

The trigger criteria and recorded measurements to May 2020 for groundwater levels and EC within WMLP323, WMLP328 and WML113C are shown in Table 2.1. Exceedances are shown in orange. The WMP requires three consecutive exceedances to be investigated.

⁵ Aquaterra (2009). "Bowmans Creek Diversion: Groundwater Impact Assessment Report". Reference No. S55G/011g, dated 21 October 2009.

⁶ RPS (2014). "Ashton coal groundwater model". Reference No. S55N/022b, dated 09 May 2014.

⁷ AGE (2016) "Yancoal – Ashton Coal. Longwall LW201 to LW204 - Surface and Groundwater Impact Assessment". AGE report No G1758N submitted Yancoal, 7 November 2016.

Table 2.1 WMLP323, WMLP328 and WML113C groundwater levels, EC trigger criteria, EC monitoring results and exceedances

Bore ID	Groundwater level trigger (mAHD)	Groundwater EC trigger (µS/cm) (95 th percentile)	April 2020 groundwater level (mAHD)	May 2020 groundwater level (mAHD)	March 2020 EC (μS/cm)	April 2020 EC (μS/cm)	May 2020 EC (μS/cm)
WMLP323	59.2	1241	59.23	60.38	1281	1300	1585
WMLP328	55.15	1175	dry	55.76	dry	dry	1486
WML113C	-	1445	49.77	50.04	1196	1234	1350

Figure 2.1 shows the long term trend of the WMLP323 groundwater level and EC compared to the CRD (longwall panel start or finish dates are indicated by a vertical dashed line). The CRD is an analysis of the monthly rainfall compared with the long-term average for the same month. A rising trend in the CRD plot indicates months of above average rainfall, whilst a falling slope indicates periods when rainfall is below the long-term average. The CRD declined strongly from the beginning of 2017 until the start of 2020. The CRD increased from January 2020 until May 2020, declining thereafter to July 2020. The decline in CRD is a reflection of the drier period the region experienced up until the beginning of 2020. The increasing CRD in the first half of 2020 is due to significant, but short-lived rainfall. Since 2017 the general overall long term trend is that of a declining CRD.

Figure 2.2 shows the EC results for WMLP323, WMLP328 and WML113C compared to the CRD within this predominantly dry period. Figure 2.3 shows the groundwater levels for WMLP323, WMLP328 and WML113C compared to the CRD over the same time. Trends are discussed further below.

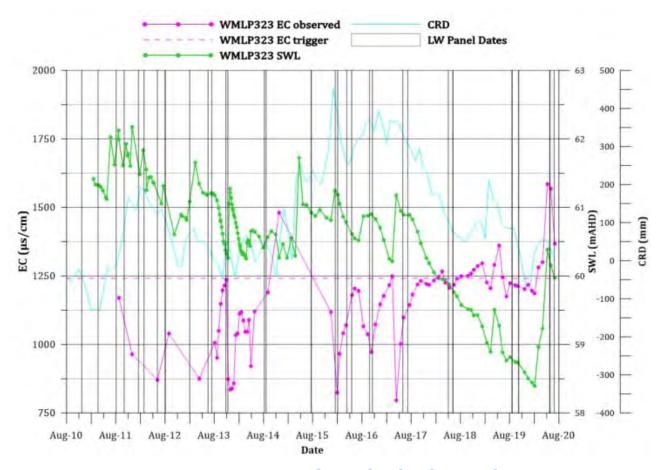


Figure 2.1 WMLP323 groundwater level and EC results vs CRD

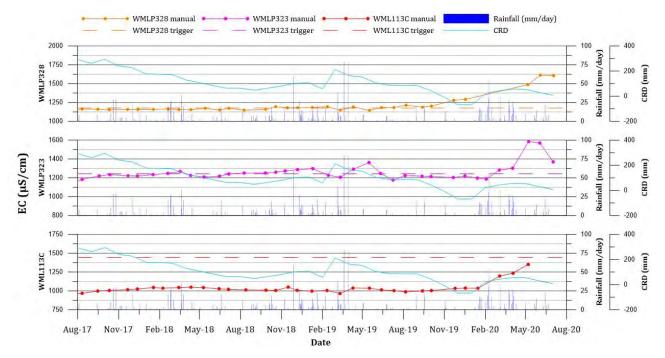


Figure 2.2 WMLP323, WMLP328 and WML113C EC results vs CRD

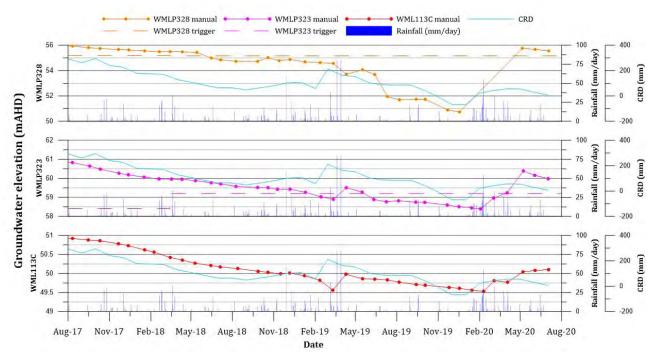


Figure 2.3 WMLP323, WMLP328 and WML113C groundwater level results vs CRD

The groundwater level in WMLP323 increases concurrently with periods of increasing CRD, indicating that the BCA is recharged by rainfall/runoff recharge and from Bowmans Creek itself, whether directly from the surface or via through-flow within the alluvial aquifer. Figure 2.4 shows that Bowmans Creek had low or no flow between August 2018 and April 2020, with flow subsiding again thereafter. Thus, the historically low groundwater levels seen within WMLP323 also correspond to a period of no flow and historically low surface water levels within Bowmans Creek (refer Figure 2.4).

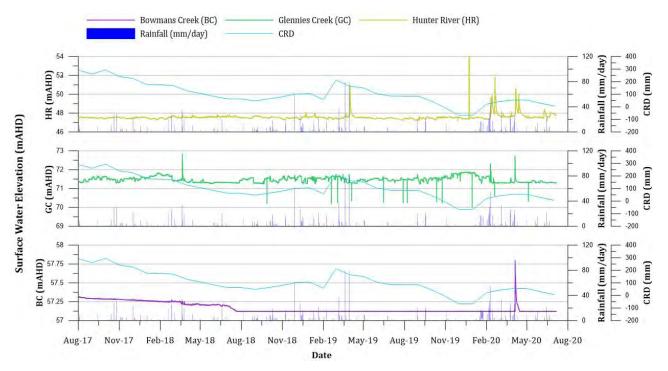


Figure 2.4 Surface water level trends

Further observations gleaned from the relationships between rainfall, groundwater levels, and groundwater EC (Figure 2.1, Figure 2.2 and Figure 2.3):

- An inverse relationship generally exists between groundwater levels and EC values over an extended time scale. This relationship is most clearly defined over the latest period of below average rainfall (2017 to 2019).
- Bores screened within the BCA all showed a decline in groundwater level and a gradual increase in EC over this dry period.
- The case for the recent EC exceedance at WMLP323 is different, as it coincided with a water level increase.
- Significant rainfall events (i.e. March/April 2019 and February to April 2020) correlate with increases in EC. Recorded EC within BCA bores return to historical values shortly thereafter (refer June/July EC values WMLP323 Figure 2.2).
- Whilst WMLP323 has not been undermined, the commencement or termination of longwall panels appears to have no bearing on either groundwater level or EC in WMLP323.

Of the 84 historic WMLP323 EC measurements, 18 (21%) are above the EC trigger of 1,241 μ S/cm. Prior to 2018, periods of low and/or declining CRD coincide with periods of generally increasing EC, and there is an inverse relationship between groundwater levels and EC values in WMLP323 (Figure 2.1). This indicates a dilution mechanism of rainfall recharge, where the solutes in rainwater are less concentrated, and act to lower the EC of groundwater when recharge occurs.

In contrast, the relationship between EC and water level at WMLP323 since 2018 has changed, with concurrent increases and decreases of both parameters (Figure 2.1). Indeed the recent EC exceedance at WMLP323 is characterised by synchronous increase in water level, above the height of 60.4 mAHD, which had not been reached since late 2017 (Figure 2.1). This relationship indicates a different mechanism between salinity and recharge, where recharge to the groundwater introduces additional solutes (dissolved salts). It appears that during this prolonged dry period (denoted by ongoing groundwater level decline between 2017 and 2019; Figure 2.1) salts were accumulating in the unsaturated zone (between 61 mAHD and 58.5 mAHD). In early 2020, when significant rainfall led to the groundwater level rising through this zone, the solids were dissolved, contributing to an increase in the groundwater salinity, and hence an increase in EC. The reason this mechanism is not active in the time prior to 2018 may be that the groundwater level has rarely been this low, especially for a sustained period of time (Figure 2.1).

The dissolution of salt (halite) form the unsaturated zone during the recent 2020 exceedance event is supported by the mass ratio of sodium to chloride (Na/Cl) in groundwater from WMLP323. The ratio at this bore is often above 0.8 (Figure 2.5), which is likely to be close to continental rain water ratios.⁸ However, the ratio from the May 2020 sample with high EC is 0.61 (Figure 2.5), which is very close to the pure halite mass ratio for Na/Cl of 0.65.

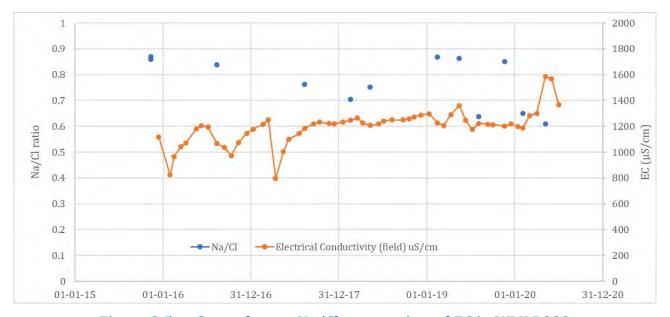


Figure 2.5 Groundwater Na/Cl mass ratio and EC in WMLP323

Table 2.1 and Table 2.2 summarise statistics for the WMLP323, WMLP328 and WML113C monitoring data. The data show that EC for this bore is often close to the trigger value of 1,241 μ S/cm, averaging 1,147 μ S/cm (data set August 2011 – July 2020 - refer Table 2.1 for trigger values). As discussed, extended periods of below average rainfall result in higher EC readings in WMLP323. Thus, this recent exceedance is not unprecedented.

⁸ Hutton and Leslie, (1958). Accession of non-nitrogenous ions dissolved in rainwater to soils in Victoria. *Australian Journal of Agricultural Research* 9(4) 492 – 507.

Similarly, monitoring bore WMLP328 records an average EC value (1,103 μ S/cm) close to the EC trigger value of 1,175 μ S/cm (data set June 2010 – July 2020). Significant rainfall events, particularly after periods of prolonged drought, result in spikes in EC values in WMLP328. Mobilisation of salts from the unsaturated zone are the most likely explanation of these patterns.

WML113C does not record an average EC value close to the relevant trigger (1,105 μ S/cm average vs. 1,445 μ S/cm trigger – data set November 2007 – July 2020). WML113C has not historically exceeded its EC trigger and is included in this investigation due to a trend of increasing EC values between February and May, 2020, following heavy rain earlier in that same year. WML113C has had insufficient water to enable a sample to be taken since June 2020. As with the other bores, the water level in WML113C recently rose above a level that has not been reached for several years (Figure 2.3). Dissolution of salts from this zone is the likely cause of the increase in EC.

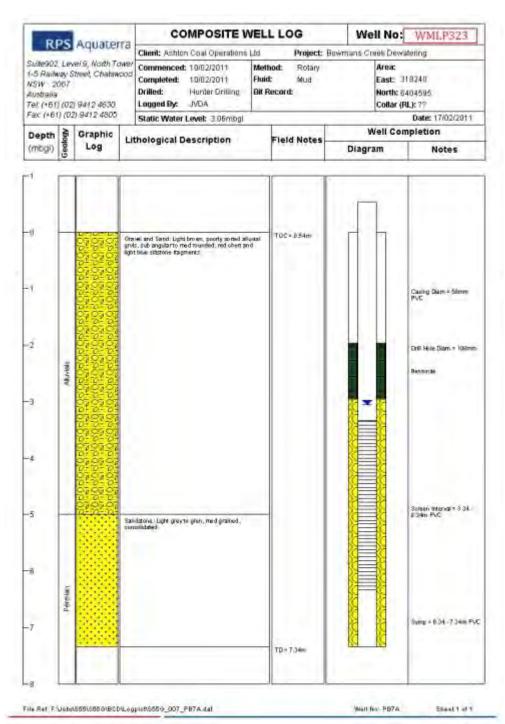
Table 2.2 Summary of WMLP328, WMLP323 and WMLP311 quality statistics

Chatistia	WMLP328		WMLF	2323	WML113C			
Statistic	EC (μS/cm)	pН	EC (μS/cm)	pН	EC (μS/cm)	рН		
Range	844 - 1,612	6.55 - 8.38	796 - 1,585	6.47 - 8.12	902 - 1,368	6.58 - 7.75		
Mean	1,103	7.17	1,147	7.11	1,055	7.04		
Median	1,102	7.09	1,188	7.07	1,027	6.99		
5th percentile	911	6.64	860	6.55	922	6.69		
95th percentile	1,290	7.84	1,352	7.77	1,278	7.42		

A copy of the bore construction logs for WMLP323, WMLP328 and WML113C is included as Attachment 1. The bore construction logs show bore WMLP323 is screened across multiple lithologies; both within sands and gravels of the BCA and Permian sandstone. Other BCA bores are known to have subcropping coal seams less than 5 m beneath the base of the alluvium (i.e.T3A). Despite this, the groundwater levels (and therefore quality) are evidently less influenced by mining activities, and more closely linked to climatic changes.

WML13C log shows the Bayswater seam subcropping approximately 8 m below the base of the bore. Whilst WMLP323 only intersected approximately 2 m of Permian strata, it is likely that coal would have been intersected had the borehole continued much deeper. Given the likely proximity of coal seams to the base of the alluvium there is the potential for groundwater exchange between the alluvium and the more saline groundwater associated with the fractured rock. The possibility of this groundwater exchange is increased during times of reduced hydraulic head in the BCA, and low surface water flows in Bowmans Creek. However, inflow of groundwater from the Permian strata is very unlikely to be the cause of the recent EC exceedances, as they are associated with an increase in water level in the BCA.

3 Summary

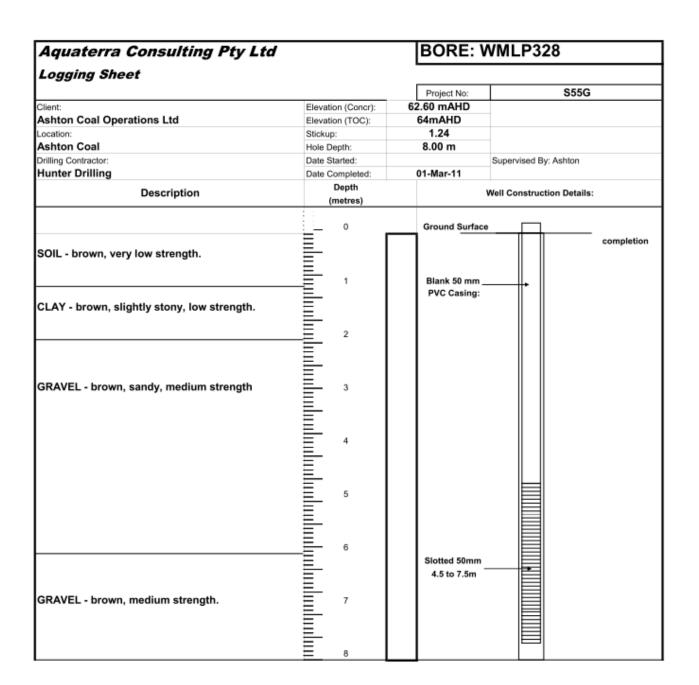

In summary:

- Prior to 2018, an inverse relationship exists between groundwater levels and EC values in WMLP323, and also in WMLP328 and WML311. This relationship is most clearly defined over the latest period of below average rainfall (2017 - 2019) and is further supported by available pH data.
- Since 2018, a prolonged dry period decreased water levels in all the bores to unprecedented levels. This appears to have allowed salts to accumulate in the unsaturated zone.
- These salts were then remobilised by a rising watertable after significant rainfall in early 2020, causing the EC exceedances in groundwater at WMLP323 and WMLP328.
- Groundwater levels in BCA bores are strongly influenced by rainfall. The current extended period of below average rainfall has seen a commensurate decline in groundwater levels within BCA bores.
- Whilst WMLP323 has not been undermined, the commencement or termination of longwall panels appears to have no bearing on either groundwater levels or EC in WMLP323.

Given time, a return to average rainfall values, and in increased hydraulic head in Bowmans Creek and associated alluvium, it is likely that EC levels within WMLP323 will decline from the current level of $1,368~\mu\text{S/cm}$ and return to levels nearer the trigger value of $1,241~\mu\text{S/cm}$.

Although the impacts are not considered mining related, they are within the approved impacts. There is no change in the beneficial use of the groundwater, and no environmental impact is expected as a result of the EC change.

Attachment 1 WMLP323, WMLP328 and WML113C bore construction logs			
Attachment 1 WMLP323, WMLP328 and WML113C bore construction logs			
	Attachment 1	WMLP323,	WMLP328 and WML113C bore construction logs



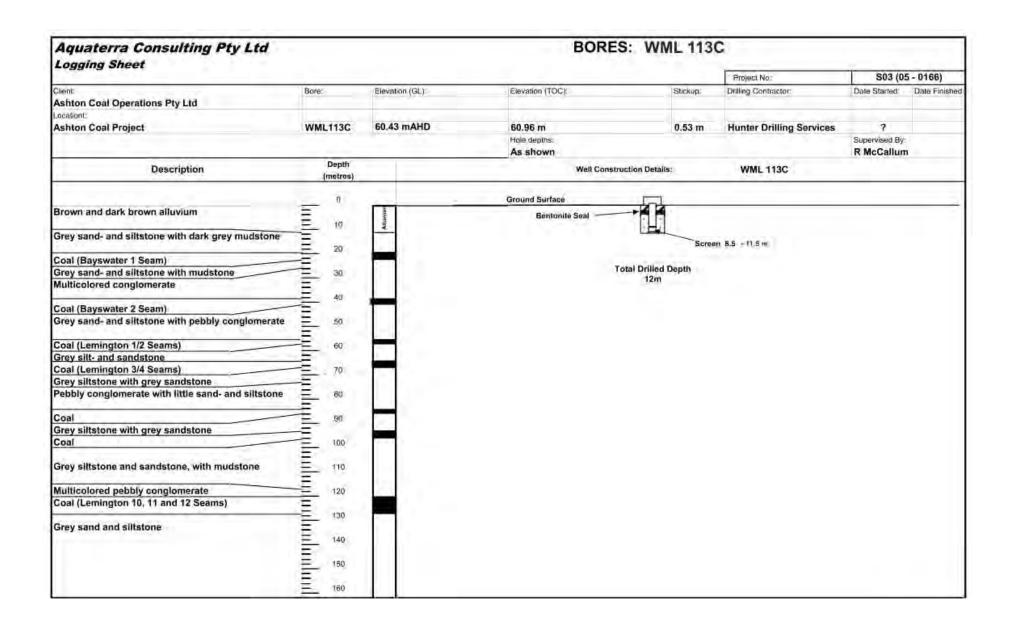

Monitoring bore WMLP323


Figure -

Assess WARFALT DE Transportation (UTSTANI)

