Ashton Coal

Environmental Noise Monitoring
May 2018

Reference: 18177_R01
Report date: 5 June 2018

Prepared for
Ashton Coal Operations Pty Limited
PO Box 6699
Singleton NSW 2330

Prepared by
Global Acoustics Pty Ltd
PO Box 3115
Thornton NSW 2322

Prepared: Tambalyn Durney
Consultant

QA Review: Amanda Borserio
Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire
EXECUTIVE SUMMARY

Global Acoustics was engaged by Ashton Coal Operations to conduct monthly noise monitoring for the Ashton Coal Project (ACP) in accordance with the relevant Project Approval, Environment Protection Licence (EPL), and Noise Management Plan (NMP).

Environmental noise monitoring described in this report was undertaken during the night of 14 May 2018. The survey purpose is to quantify and describe the existing acoustic environment at monitoring locations around the site and compare results with relevant limits.

Activities from ACP complied with the relevant project specific noise limits at all monitoring locations during attended noise monitoring for May 2018. Meteorological conditions may result in criteria not always being applicable.

Global Acoustics Pty Ltd
Table of Contents

1 INTRODUCTION...1

1.1 Background...1
1.2 Attended Noise Monitoring Locations..1
1.3 Terminology & Abbreviations..3

2 CONSENT & CRITERIA..4

2.1 Project Approval & Project Specific Criteria...4
2.2 Environment Protection Licence...4
2.3 Modifying Factors..5
 2.3.1 Tonality and Intermittent Noise...5
 2.3.2 Low Frequency Noise..5

3 METHODOLOGY..7

3.1 Overview...7
3.2 Attended Noise Monitoring..7
3.3 Vertical Temperature Gradient Estimation...8
3.4 Modifying Factors...9
3.5 Noise Monitoring Equipment..9

4 RESULTS..10

4.1 Modifying factors...10
4.2 Attended Noise Monitoring...10
4.3 Atmospheric Conditions..12

5 SUMMARY OF COMPLIANCE...13

Appendices

A STATUTORY REQUIREMENTS..14
B CALIBRATION CERTIFICATES...18
1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Ashton Coal Operations to conduct environmental noise monitoring for the Ashton Coal Project (ACP). ACP is an underground mine located to the north-west of Camberwell, off the New England Highway.

Monthly attended noise monitoring is a requirement of the ACP Noise Management Plan (NMP). Monitoring described in this report was undertaken at three locations during the night period of 14 May 2018.

The survey purpose is to quantify and describe the existing acoustic environment at monitoring locations around the site and compare results with relevant limits.

1.2 Attended Noise Monitoring Locations

There were three monitoring locations during this survey as detailed in Table 1.1 and shown on Figure 1. It should be noted that this figure shows the actual monitoring position, not the location of residences.

<table>
<thead>
<tr>
<th>Report Descriptor</th>
<th>Monitoring Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>Camberwell Village (west)</td>
</tr>
<tr>
<td>N3</td>
<td>Camberwell Village (north-east)</td>
</tr>
<tr>
<td>N4</td>
<td>South of New England Highway</td>
</tr>
</tbody>
</table>
Figure 1: ACP Attended Noise Monitoring Locations

Source: ACP NMP
1.3 Terminology & Abbreviations

Some definitions of terms and abbreviations, which may be used in this report, are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>A</sub></td>
<td>The A-weighted root mean squared (RMS) noise level at any instant</td>
</tr>
<tr>
<td>L<sub>Amax</sub></td>
<td>The maximum A-weighted noise level over a time period or for an event</td>
</tr>
<tr>
<td>L<sub>A1</sub></td>
<td>The noise level which is exceeded for 1 per cent of the time</td>
</tr>
<tr>
<td>L<sub>A10</sub></td>
<td>The noise level which is exceeded for 10 percent of the time, which is approximately the average of the maximum noise levels</td>
</tr>
<tr>
<td>L<sub>A50</sub></td>
<td>The noise level which is exceeded for 50 per cent of the time</td>
</tr>
<tr>
<td>L<sub>A90</sub></td>
<td>The level exceeded for 90 percent of the time, which is approximately the average of the minimum noise levels. The L<sub>A90</sub> level is often referred to as the “background” noise level and is commonly used to determine noise criteria for assessment purposes</td>
</tr>
<tr>
<td>L<sub>Amin</sub></td>
<td>The minimum A-weighted noise level over a time period or for an event</td>
</tr>
<tr>
<td>L<sub>Aeq</sub></td>
<td>The average noise energy during a measurement period</td>
</tr>
<tr>
<td>dB(A)</td>
<td>Noise level measurement units are decibels (dB). The “A” weighting scale is used to describe human response to noise</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound pressure level (SPL), fluctuations in pressure measured as 10 times a logarithmic scale, the reference pressure being 20 micropascals</td>
</tr>
<tr>
<td>Hertz (Hz)</td>
<td>Cycles per second, the frequency of fluctuations in pressure, sound is usually a combination of many frequencies together</td>
</tr>
<tr>
<td>VTG</td>
<td>Vertical temperature gradient in degrees Celsius per 100 metres altitude</td>
</tr>
<tr>
<td>IA</td>
<td>Inaudible. When site only noise is noted as IA, there was no noise from the source of interest audible at the monitoring location</td>
</tr>
<tr>
<td>NM</td>
<td>Not Measurable. If site only noise is noted as NM, this means some noise from the source of interest was audible at low-levels, but could not be quantified</td>
</tr>
<tr>
<td>Day</td>
<td>This is the period 7:00am to 6:00pm</td>
</tr>
<tr>
<td>Evening</td>
<td>This is the period 6:00pm to 10:00pm</td>
</tr>
<tr>
<td>Night</td>
<td>This is the period 10:00pm to 7:00am</td>
</tr>
</tbody>
</table>
2 CONSENT & CRITERIA

2.1 Project Approval & Project Specific Criteria

The sections of the Project Approval relating to noise are reproduced in Appendix A. Different noise limits exist for ACP when open cut mining operations are not being undertaken. As this is currently the case, noise impact assessment criteria are outlined in Appendix 6 of the project approval (MOD 5) and are detailed in Table 2.1.

Table 2.1: ACP NOISE IMPACT ASSESSMENT CRITERIA

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Day/Evening/Night Impact Assessment Criteria</th>
<th>Night Impact Assessment Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$L_{Aeq,15\text{minute}}$</td>
<td>$L_{A1,1\text{minute}}$</td>
</tr>
<tr>
<td>N2</td>
<td>38/38/36</td>
<td>46</td>
</tr>
<tr>
<td>N3</td>
<td>38/38/36</td>
<td>46</td>
</tr>
<tr>
<td>N4</td>
<td>38/38/36</td>
<td>46</td>
</tr>
</tbody>
</table>

Appendix 8 of the Project Approval states:

Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:

a) during periods of rain or hail;

b) average wind speed at microphone height exceeds 5 m/s;

c) wind speeds greater than 3 m/s measures at 10 m above ground level; and

d) temperature inversion conditions greater than $3^\circ\text{C}/100\text{m}$.

This has been interpreted to mean that criteria used for determining compliance are not applicable under the above meteorological conditions.

2.2 Environment Protection Licence

ACP holds Environment Protection Licence (EPL) number 11879. The most recent license revision was issued on 17 August 2017. The relevant sections of the EPL relating to noise are reproduced in Appendix A.
2.3 Modifying Factors

The EPA ‘Noise Policy for Industry’ (NPfI, 2017) was approved for use in NSW in October 2017, and supersedes the EPA’s Industrial Noise Policy (INP, 2000). Assessment and reporting of modifying factors is to be carried out in accordance with Fact Sheet C of the NPfI.

NPfI modifying factors, as they are applicable to mining noise, are described in more detail below.

2.3.1 Tonality and Intermittent Noise

As defined in the NPfI:

Tonal noise contains a prominent frequency and is characterised by a definite pitch.

Intermittent noise is noise where the level suddenly drops/increases several times during the assessment period, with a noticeable change in source noise level of at least 5 dB(A); for example, equipment cycling on and off. The intermittency correction is not intended to be applied to changes in noise level due to meteorology.

2.3.2 Low Frequency Noise

As defined in the NPfI:

Low frequency noise is noise with an unbalanced spectrum and containing major components within the low-frequency range (10 – 160 Hz) of the frequency spectrum.

The NPfI contains the current method of assessing low frequency noise, which is a 2 step process as detailed below:

Measure/assess source contribution C-weighted and A-weighted $L_{eq,T}$ levels over the same time period. The low frequency noise modifying factor correction is to be applied where the C-A level is 15 dB or more and:

- where any of the 1/3 octave noise levels in Table C2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2 dBA positive adjustment to measured A weighted levels applies for the evening/night period; and

- where any of the 1/3 octave noise levels in Table C2 are exceeded by more than 5 dB and cannot be mitigated, a 5 dBA positive adjustment to measured A weighted levels applies for the evening/night period and a 2 dBA positive adjustment applies for the daytime period.
Table C2 of the NPfI is reproduced below:

Table C2: One-third octave low-frequency noise thresholds.

<table>
<thead>
<tr>
<th>Hz/dB(Z)</th>
<th>One-third octave L$_{eq,15min}$ threshold level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>10</td>
</tr>
<tr>
<td>dB(Z)</td>
<td>92</td>
</tr>
</tbody>
</table>

Notes:
- dB(Z) = decibel (Z frequency weighted).
- For the assessment of low-frequency noise, care should be taken to select a wind screen that can protect the microphone from wind-induced noise characteristics at least 10 dB below the threshold values in Table C2 for wind speeds up to 5 metres per second. It is likely that high performance larger diameter wind screens (nominally 175 mm) will be required to achieve this performance (Hessler, 2008). In any case, the performance of the wind screen and wind speeds at which data will be excluded needs to be stated.
- Low-frequency noise corrections only apply under the standard and/or noise-enhancing meteorological conditions.
- Where a receiver location has had architectural acoustic treatment applied (including alternative means of mechanical ventilation satisfying the Building Code of Australia) by a proponent, as part of consent requirements or as a private negotiated agreement, alternative external low-frequency noise assessment criteria may be proposed to account for the higher transmission loss of the building façade.
- Measurements should be made between 1.2 and 1.5 metres above ground level unless otherwise approved through a planning instrument (consent/approval) or environment protection licence, and at locations nominated in the development consent or licence.
3 METHODOLOGY

3.1 Overview

Noise monitoring was conducted at the monitoring locations in accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise' and relevant NSW EPA requirements.

Meteorological data was obtained from ACP’s weather stations; ‘Repeater Weather Station’ (M2) and ‘Site 1 Weather Station’ (M1). This allowed correlation of atmospheric parameters and measured noise levels. See Section 3.3 for further details on calculation method. Atmospheric condition measurement at ground level was also undertaken.

3.2 Attended Noise Monitoring

During this survey, attended monitoring was undertaken at three locations during night period, once at each location, were the duration of each measurement was 15 minutes.

Attended monitoring is preferred to the use of noise loggers when determining compliance with prescribed limits as it allows the most accurate determination of the contribution, if any, to measured noise levels by the source of interest, in this case ACP.

If the exact contribution of the source of interest cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise levels, for example L_{A10}, L_{A50} or L_{A90}. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

• site noise levels were extremely low and unlikely, in many cases, to be even noticed;

• site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or

• it was not feasible or reasonable to employ methods such as move closer and back calculate. Cases may include, but are not limited to, rough terrain preventing closer measurement, addition/removal of significant source to receiver shielding caused by moving closer, and meteorological conditions.
where back calculation may not be accurate.

A measurement of $L_{A1,1\text{minute}}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or $L_{A\text{max}}$, received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

To avoid disturbance to residents, particularly during the night period, monitoring locations have been used to represent multiple residences. Suitable monitoring locations where noise levels are likely to be higher than those measured at the residence are chosen to take a conservative approach, as the direct measurement of noise 1 metre from the dwelling facades or within 30 metres of the residence is often impractical due to access requirements and the presence of dogs, air conditioners and other noise sources at the residences.

Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of ACP’s contribution, if any, to measured levels. At each receptor location, the $L_{A\text{eq,15\text{minute}}}$ for ACP (in the absence of any other noise) was measured directly, where possible, or determined by frequency analysis. Time variations of noise sources in each measurement, their temporal characteristics, are taken into account via statistical descriptors.

3.3 Vertical Temperature Gradient Estimation

Temperature inversion conditions have been determined using the direct measurement method outlined in Fact Sheet D of the NPfI.

Inversion strength based on the temperature differential between the two weather stations was calculated using the following formula:

\[
\text{Inversion strength} = (\text{upper height temp} - \text{lower height temp}) \times \left(\frac{100}{\text{upper height} - \text{lower height}}\right),
\]

Where:

- Upper height temperature is the temperature measured at 10 metres above ground level at M2;
- Lower height temperature is the temperature measured at 10 metres above ground level at M1; and
- Upper height – lower height is the vertical difference between M2 and M1 (which is 73 metres).

Other meteorological data, such as wind speed, was sourced from M2.
3.4 Modifying Factors

Years of monitoring have indicated that noise levels from mining operations, particularly those measured at significant distances from the source are relatively continuous and broad spectrum. Given this, noise levels from ACP at the monitoring locations are unlikely to be intermittent or tonal.

Assessment of low-frequency modifying factors is necessary when application of the maximum correction could potentially result in an exceedance of the relevant site-only L_{Aeq} criterion. Low-frequency analysis is therefore undertaken for measurements in this report where:

- meteorological conditions resulted in criteria being applicable;
- contributions from ACP were audible and directly measurable, such that the site-only L_{Aeq} was not “NM” or less than a maximum cut off value (e.g. “<20 dB” or “<30dB”);
- contributions from ACP were within 5 dB of the relevant L_{Aeq} criterion, as 5 dB is the maximum penalty that can be applied by low-frequency modifying factors; and
- ACP was the dominant low-frequency noise source.

All measurements meeting these conditions were evaluated for possible low frequency penalty applicability in accordance with the NPfI.

3.5 Noise Monitoring Equipment

Equipment used to measure environmental noise levels is detailed in Table 3.1. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

<table>
<thead>
<tr>
<th>Model</th>
<th>Serial Number</th>
<th>Calibration Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rion NA-28 sound level analyser</td>
<td>30131882</td>
<td>14/03/2019</td>
</tr>
<tr>
<td>Rion NC-73 acoustic calibrator</td>
<td>11248300</td>
<td>10/10/2019</td>
</tr>
</tbody>
</table>

4 RESULTS

4.1 Modifying factors

Measured ACP only levels were assessed for the applicability of modifying factors in accordance with the EPA’s NPfI.

There were no intermittent noise sources from site during the survey. In addition, there is no equipment on site that is likely to generate tonal noise as defined in the NPfI. None of the measurements satisfied the conditions outlined in Section 3.4 when assessing low frequency noise.

Therefore no further assessment of modifying factors was undertaken.

4.2 Attended Noise Monitoring

Noise levels measured at each location during attended surveys are provided in Table 4.1. These noise levels are the result of many sounds reaching the sound level meter microphone during monitoring.

Table 4.1: MEASURED NOISE LEVELS – MAY 2018

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date and Time</th>
<th>$L_{A_{max}}$ dB</th>
<th>L_{A1} dB</th>
<th>L_{A10} dB</th>
<th>L_{A50} dB</th>
<th>$L_{A_{eq}}$ dB</th>
<th>L_{A90} dB</th>
<th>$L_{A_{min}}$ dB</th>
<th>$L_{C_{eq}}$ dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>14/05/2018 23:03</td>
<td>65</td>
<td>62</td>
<td>53</td>
<td>44</td>
<td>50</td>
<td>40</td>
<td>34</td>
<td>58</td>
</tr>
<tr>
<td>N3</td>
<td>14/05/2018 23:38</td>
<td>55</td>
<td>51</td>
<td>47</td>
<td>42</td>
<td>44</td>
<td>38</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>N4</td>
<td>14/05/2018 22:30</td>
<td>58</td>
<td>51</td>
<td>47</td>
<td>39</td>
<td>43</td>
<td>35</td>
<td>32</td>
<td>55</td>
</tr>
</tbody>
</table>

Notes:
1. Levels in this table are not necessarily the result of activity at ACP.

Table 4.2 compares measured $L_{A_{eq,15\text{minute}}}$ levels from ACP with impact assessment criteria.

Table 4.2: $L_{A_{eq,15\text{minute}}}$ GENERATED BY ACP AGAINST IMPACT ASSESSMENT CRITERIA – MAY 2018

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date and Time</th>
<th>Wind Speed m/s</th>
<th>VTG °C/100m</th>
<th>Criterion dB</th>
<th>Criterion Applies?</th>
<th>ACP $L_{A_{eq}}$ dB</th>
<th>Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>14/05/2018 23:03</td>
<td>2.2</td>
<td>-11.4</td>
<td>36</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
<tr>
<td>N3</td>
<td>14/05/2018 23:38</td>
<td>2.0</td>
<td>-10.4</td>
<td>36</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
<tr>
<td>N4</td>
<td>14/05/2018 22:30</td>
<td>2.3</td>
<td>-11.2</td>
<td>36</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Notes:
1. Criterion may or may not apply due to rounding of meteorological data values;
2. Noise emission limits do not apply during the following meteorological conditions: periods of rain or hail, wind speeds greater than 3 metres per second (at a height of 10 metres); or temperature inversion conditions greater than 3°C/100m;
3. Estimated or measured $L_{A_{eq,15\text{minute}}}$ attributed to ACP; and
4. NA in exceedance column means atmospheric conditions outside conditions specified in development consent and so criterion is not applicable.
Table 4.3 compares measured $L_{A1,1\text{minute}}$ levels from ACP with impact assessment criteria.

Table 4.3: $L_{A1,1\text{minute}}$ GENERATED BY ACP AGAINST IMPACT ASSESSMENT CRITERIA – MAY 2018

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date and Time</th>
<th>Wind Speed m/s</th>
<th>VTG $^\circ\text{C}/100\text{m}$</th>
<th>Criterion dB</th>
<th>Criterion Applies?</th>
<th>ACP $L_{A1,1\text{min}}$ dB3</th>
<th>Exceedance4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>14/05/2018 23:03</td>
<td>2.2</td>
<td>-11.4</td>
<td>46</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
<tr>
<td>N3</td>
<td>14/05/2018 23:38</td>
<td>2.0</td>
<td>-10.4</td>
<td>46</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
<tr>
<td>N4</td>
<td>14/05/2018 22:30</td>
<td>2.3</td>
<td>-11.2</td>
<td>46</td>
<td>Yes</td>
<td>IA</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Notes:

1. Criterion may or may not apply due to rounding of meteorological data values;
2. Noise emission limits do not apply during the following meteorological conditions: periods of rain or hail, wind speeds greater than 3 metres per second (at a height of 10 metres); or temperature inversion conditions greater than 3$^\circ\text{C}/100\text{m}$;
3. Estimated or measured $L_{A1,1\text{minute}}$ attributed to ACP; and
4. NA in exceedance column means atmospheric conditions outside conditions specified in development consent and so criterion is not applicable.
4.3 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.4. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain or hail.

Table 4.4: MEASURED ATMOSPHERIC CONDITIONS – MAY 2018

<table>
<thead>
<tr>
<th>Location</th>
<th>Start Date and Time</th>
<th>Temperature Degrees</th>
<th>Wind Speed m/s</th>
<th>Wind Direction Degrees(^1)</th>
<th>Cloud Cover Eighths</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>14/05/2018 23:03</td>
<td>13</td>
<td>0.0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>N3</td>
<td>14/05/2018 23:38</td>
<td>12</td>
<td>0.0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>N4</td>
<td>14/05/2018 22:30</td>
<td>9</td>
<td>1.0</td>
<td>160</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. “-” indicates calm conditions at 1.8 metres.

Meteorological data sourced from both ACP weather stations was used to determine compliance with specified noise criteria.
5 SUMMARY OF COMPLIANCE

Global Acoustics was engaged by Ashton Coal Operations to conduct noise monitoring for the Ashton Coal Project in accordance with Project Approval, EPL and NMP.

The following summaries apply to attended noise monitoring conducted during the night period on 14 May 2018.

Activities from ACP complied with the relevant development consent noise limits during attended noise monitoring for May 2018 at all monitoring locations. Meteorological conditions may result in criteria not always being applicable.
APPENDIX

A STATUTORY REQUIREMENTS
A.1 ASHTON COAL OPERATIONS PROJECT APPROVAL

Relevant sections of Project Approval (modification 5) are reproduced below.

APPENDIX 6
ALTERNATE NOISE CONDITIONS

NOISE

Application

1. Conditions 2 to 3 below have effect during times when open cut mining operations are not being undertaken at the Ashton Mine Complex, in the opinion of the Secretary.

Noise Criteria

2. Except for the noise-affected land in Table 1 of Schedule 3, the Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land or on more than 25 per cent of any privately-owned land.

Table 1: Noise Criteria dB(A)

<table>
<thead>
<tr>
<th>Receiver No.</th>
<th>Receiver</th>
<th>Day $ (L_{Aeq} (15min))$</th>
<th>Evening $ (L_{Aeq} (15min))$</th>
<th>Night $ (L_{Aeq} (15min))$</th>
<th>Night $ (L_{A1} (1 min))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>All privately-owned land</td>
<td>38</td>
<td>38</td>
<td>36</td>
<td>46</td>
</tr>
</tbody>
</table>

Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.

However, these noise criteria do not apply if the Applicant has an agreement with the relevant owner/s of the residence/land to generate higher noise levels, and the Applicant has advised the Department in writing of the terms of this agreement.

Additional Noise Mitigation Measures

3. Upon receiving a written request from the owner of any residence on any privately-owned land where subsequent operational noise monitoring shows the noise generated by the development exceeds the noise limits in Table 2, the Applicant must implement additional reasonable and feasible noise mitigation measures (such as double glazing, insulation, and/or air conditioning) at the residence in consultation with the owner.

If within 3 months of receiving this request from the landowner, the Applicant and the landowner cannot agree on the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Secretary for resolution.

Table 2: Additional Noise Mitigation Criteria dB(A) $L_{Aeq} (15min)$

<table>
<thead>
<tr>
<th>Receiver No.</th>
<th>Receiver</th>
<th>Day $ (L_{Aeq} (15min))$</th>
<th>Evening $ (L_{Aeq} (15min))$</th>
<th>Night $ (L_{Aeq} (15min))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>All privately-owned land</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Notes:

- Noise generated by the development is to be measured in accordance with the relevant requirements of the NSW Industrial Noise Policy. Appendix 8 sets out the requirements for evaluating compliance with these criteria.
- For this condition to apply, the exceedance of the criteria must be systemic.
APPENDIX 8

NOISE COMPLIANCE ASSESSMENT

Compliance Monitoring

1. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.

2. Data collected for the purposes of determining compliance with the relevant conditions of this approval is to be excluded under the following meteorological conditions:
 a) during periods of rain or hail;
 b) average wind speed at microphone height exceeds 5 m/s;
 c) wind speeds greater than 3 m/s measures at 10 m above ground level; and
 d) temperature inversion conditions greater than 3°C/100m.

3. Unless otherwise agreed with the Secretary, this monitoring is to be carried out in accordance with the relevant requirements relating for reviewing performance set out in the NSW Industrial Noise Policy (as amended from time to time), in particular the requirements relating to:
 a) monitoring locations for the collection of representative noise data;
 b) equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 c) modifications to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.

4. To the extent that there is any inconsistency between the Industrial Noise Policy and the requirements set out in this Appendix, the Appendix prevails to the extent of the inconsistency.

Determination of Meteorological Conditions

5. Except for wind speed at microphone height, the data to be used for determining meteorological conditions shall be that recorded by the meteorological station located in the vicinity of the site (as required by condition 18 of Schedule 3).
A.2 ASHTON COAL OPERATIONS ENVIRONMENT PROTECTION LICENCE

Relevant sections of EPL 11879 are reproduced below.

L2 Noise limits

L2.1 Noise from the premises must not exceed the limits specified in the table below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Day LAeq(15 minute)</th>
<th>Evening LAeq(15 minute)</th>
<th>Night LAeq(15 minute)</th>
<th>Night LAeq(1 minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any residence not owned by the licensee or not subject to an agreement between the licensee and the residence owner as to an alternative noise limit.</td>
<td>38</td>
<td>38</td>
<td>36</td>
<td>46</td>
</tr>
</tbody>
</table>

L2.2 For the purpose of Condition L2.1:

a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays,

b) Evening is defined as the period from 6pm to 10pm, and

c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays

L2.3 Noise from the premises must be measured at the most affected point on or within the residential boundary or at the most affected point within 30m of the dwelling where the dwelling is more than 30m from boundary to determine compliance with the LAeq(15 minute) noise limits in condition L2.1. Where it can be demonstrated that direct measurement of noise from the premises is impractical, the EPA may accept alternative means of determining compliance. See Chapter 11 of the NSW Industrial Noise Policy. The modification factors presented in Section 4 of the NSW Industrial Noise Policy shall also be applied to the measured noise level where applicable.

L2.4 Noise from the premises is to be measured or computed at 1m from the dwelling facade to determine compliance with condition L2.1 (LA1 (1 minute) noise limit).

L2.5 The noise emission limits identified in condition L2.1 apply under the following meteorological conditions:

a) wind speeds up to 3m/s at 10m above ground level; and

b) temperature inversion conditions up to 30°C/100m.

L2.6 Open cut mining activities must only be carried out between the hours of 0700 and 2200 Monday to Saturday, and 0800 and 2200 on Sundays and Public Holidays.
APPENDIX

B CALIBRATION CERTIFICATES
Sound Level Meter
IEC 61672-3.2013

Calibration Certificate

Calibration Number: C17126

Client Details: Global Acoustics Pty Ltd
12/16 Huntingdale Drive
Thornton NSW 2322

Equipment Tested/ Model Number: Rion NA-28
Instrument Serial Number: 30131882
Microphone Serial Number: 04739
Pre-amplifier Serial Number: 11942

Pre-Test Atmospheric Conditions
Ambient Temperature: 22.4°C
Relative Humidity: 55.6%
Barometric Pressure: 99.91kPa

Post-Test Atmospheric Conditions
Ambient Temperature: 22.6°C
Relative Humidity: 58.1%
Barometric Pressure: 99.85kPa

Calibration Technician: Vicky Jaiswal
Calibration Date: 14/03/2017

Secondary Check: Riley Cooper
Report Issue Date: 15/03/2017

Approved Signatory: Ken Williams

Clause and Characteristic Tested	Result	Clause and Characteristic Tested	Result
12: Acoustical Sig. tests of a frequency weighting | Pass | 17: Level linearity incl. the level range control | Pass
13: Electrical Sig. tests of frequency weightings | Pass | 18: Toneburst response | Pass
14: Frequency and time weightings at 1 kHz | Pass | 19: C Weighted Peak Sound Level | Pass
15: Long Term Stability | Pass | 20: Overload indication | Pass
16: Level linearity on the reference level range | Pass | 21: High Level Stability | Pass

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed.

As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation test performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Least Uncertainties of Measurement -

<table>
<thead>
<tr>
<th>Environmental Conditions</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>±0.05°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>±0.4%</td>
</tr>
<tr>
<td>Barometric Pressure</td>
<td>±0.017kPa</td>
</tr>
</tbody>
</table>

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172.
Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.
Ashton Coal - Environmental Noise Monitoring May 2018

Sound Calibrator
IEC 60942-2004

Calibration Certificate

Calibration Number: C17511

Client Details: Acoustic Research Labs Pty Ltd
Level 7, Bld 2, 423 Pennant Hills Road
Pennant Hills NSW 2120

Equipment Tested/ Model Number: Rion NC-73
Instrument Serial Number: 11248300

Atmospheric Conditions:
Ambient Temperature: 22.8°C
Relative Humidity: 49.8%
Barometric Pressure: 99.46kPa

Calibration Technician: Jason Gomes
Calibration Date: 10/10/2017

Secondary Check: Riley Cooper
Report Issue Date: 11/10/2017

Approved Signatory: Ken Williams

<table>
<thead>
<tr>
<th>Clause and Characteristic Tested</th>
<th>Result</th>
<th>Clause and Characteristic Tested</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2: Generated Sound Pressure Level</td>
<td>Pass</td>
<td>5.3.2: Frequency Generated</td>
<td>Pass</td>
</tr>
<tr>
<td>5.2.3: Short Term Fluctuation</td>
<td>Pass</td>
<td>5.5: Total Distortion</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Nominal Level | Nominal Frequency | Measured Level | Measured Frequency
94.0 | 1000.0 | 94.2 | 1004.10

The sound calibrator has been shown to conform to the class 2 requirements for periodic testing, described in Annex B of IEC 60942:2004 for the sound pressure level(s) and frequency(ies) stated, for the environmental conditions under which the tests were performed.

Least Uncertainties of Measurement -

<table>
<thead>
<tr>
<th>Specific Tests</th>
<th>Environmental Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated SPL</td>
<td>±0.11dB</td>
</tr>
<tr>
<td>Short Term Fluct.</td>
<td>±0.01dB</td>
</tr>
<tr>
<td>Frequency</td>
<td>±0.01%</td>
</tr>
<tr>
<td>Distortion</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Temperature</td>
<td>±0.05°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>±0.45%</td>
</tr>
<tr>
<td>Barometric Pressure</td>
<td>±0.017kPa</td>
</tr>
</tbody>
</table>

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172.
Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.